K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2016

Bài 1: \(\left(5n+2\right)^2-4=\left(25n^2+2.2.5n+2^2\right)-4=25n^2+20n+4-4\)

\(=25n^2+20n=5n\left(5n+4\right)\)

Có \(5n\left(5n+4\right)⋮5\) (có cơ số 5n)

=> \(\left(5n+2\right)^2-4⋮5\)

Bài 2: \(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)

Đây là tích ba số tự nhiên liên tiếp nên chia hết cho 3.

Vậy: \(n^3-n⋮3\)

Bài 3: \(x^2\left(x-3\right)+12-4x=0\)

\(\Leftrightarrow x^2\left(x-3\right)+4\left(3-x\right)=0\)

\(\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x-3\right)=0\)

\(\Leftrightarrow x^2=4,x=3\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=-2\\x=3\end{array}\right.\)

20 tháng 8 2016

Câu 1:

Ta có:(5n+2)2-4=25n2+20n+4-4

                         =5.5n2+5.4n

                         =5.(5n2+4n)

       Vì 5.(5n2+4n) chia hêt cho 5

Suy ra:(5n+2)2-4

Câu 2:

Ta có:

n3-n=n.n2-n

       =n.(n2-1)

      =(n-1).n.(n+1)

       Vì (n-1);n và (n+1) là ba số tự nhiên liên tiếp

 Mà (n-1).n.(n+1) chia hết cho 3(1)

              Và (n-1).(n+1) chia hêt cho 2(2)

Từ (1) và (2) suy ra:(n-1).n.(n+1) chia hết cho 6

 

9 tháng 6 2017

   n(2n - 3) - 2n(n + 1)
= 2n2 - 3n - 2n2 - 2n
= -5n
= (-1).5n \(⋮5\)
   (n - 1)(3 - 2n) - n (n + 5)
= 3n - 2n2 - 3 + 2n - n2 - 5n
= -3n2 - 3
= 3(- n2 - 1)\(⋮3\)

13 tháng 9 2017

Bằng 3(-n^2-1) 

Ls

BN thử vào câu hỏi tương tự xem có k?

Nếu có thì bn xem nhé!

Nếu k thì xin lỗi đã làm phiền bn

Hội con 🐄 chúc bạn học tốt!!!

16 tháng 11 2021

Đây là tích 4 số nguyên liên tiếp nên chia hết cho \(1\cdot2\cdot3\cdot4=24\)

Mà 24 chia hết cho 3 và 8 nên n(n+1)(n+2)(n+3) chia hết cho 3 và 8

9 tháng 2 2018

a) (n mũ 2+n) chia hết cho 2 

=> n mũ 2 +n thuộc Ư(2), tự tìm ước của 2

9 tháng 2 2018

\(n^2+n=n\left(n+1\right)\)

Vì n(n+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 => đpcm

19 tháng 12 2021

a, ( n + 2 ) chia hết cho 2

( n + 1 + 2 ) chia hết cho 3

b, ( KO BIẾT )