K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc NDH+góc NFH=180 độ

=>NDHF nội tiếp

b: Xét ΔHFN vuông tại F và ΔHEC vuông tại E có

góc FHN=góc EHC

=>ΔHFN đồng dạng với ΔHEC

=>HF/HE=HN/HC

=>HF*HC=HE*HN

c: Kẻ tiếp tuyến Mx tại M của (O)

=>góc xMC=góc MNC=góc MEF

=>FE//Mx

=>EF vuông góc MK

 

12 tháng 3 2023

phần c tại sao góc MEF=góc MNC vậy ạ

 

12 tháng 4 2017

O A B C E F H x

Kẻ thêm tiếp tuyến Bx với đường tròn (O)

Ta có: góc BAC = góc BEF (tứ giác AFEC nội tiếp, góc ngoài bằng góc đối trong)

Mà: góc BAC = góc xBC (góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung BC)

=> góc xBC = góc BEF

Mà 2 góc này ở vị trí so le trong

=> Bx // EF
Mà: OB vuông góc Bx

=> OB vuông góc với EF (đpcm)

a: góc ADH+góc AEH=180 độ

=>ADHE nội tiếp

c: Kẻ tiếp tuyến Ax của (O)

=>góc xAC=góc ABC=góc ADE

=>DE//Ax

=>OA vuông góc DE

a) Xét tứ giác AEHF có 

\(\widehat{AFH}\) và \(\widehat{AEH}\) là hai góc đối

\(\widehat{AFH}+\widehat{AEH}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: AEHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Xét tứ giác BFEC có 

\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)

\(\widehat{BFC}\) và \(\widehat{BEC}\) là hai góc cùng nhìn cạnh BC

Do đó: BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)