Cho tam giác MNP vuông tại M, MN =56cm, MP = 12cm. Gọi E là trung điểm của MP và F là trung điểm của NP
a) Tính EF. Tính diện tích tam giác MNP
b) Vẽ tia Nx song song với MP sao cho Nx cắt EF tại D. Chứng minh rằng tứ giác
MNDE là hình chữ nhật.
c) Chứng minh rằng tứ giác NDPE là hình bình hành.
a, Do F là trung điểm NP
E là trung điểm MP
=> EF là đường trung bình
=> \(EF=\dfrac{1}{2}MN=\dfrac{1}{2}.56=28\left(cm\right)\)
Diện tích tam giác MNP
\(S_{MNP}=\dfrac{1}{2}MN.MP=\dfrac{1}{2}.56.12=336\left(cm^2\right)\)
b,
Xét tứ giác NDEM có
ND // ME (gt)
DE // MN ( cmt)
=> NDEM là hình bình hành
mà có góc \(\widehat{NME}=90^o\)
=> NDEM là hình chữ nhật
c, NDEM là hình chữ nhật
=> ME = ND
mà ME = EP (do E là trung điểm MP)
=> ND = EP
Xet tứ giác NDPE có
ND = EP (cmt)
ND // EP (gt)
=> NDPE là hình bình hành