Cho đường tròn tâm o và điểm m nằm ngoài đường tròn kẻ các tiếp tuyến ma,mb a,CMR bốn điểm ABMO cùng nằm trên 1 đg tròn b, CMR ab vuông góc ôm c, CMR ao.am=mo.ah d,CMR mo là tiếp tuyến của đường tròn tâm b bán kính bh
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác OAH và tam giác OCH, có:
OA=OC=R ; OH chung ; \(\widehat{OHA}=\widehat{OHC}=90^{O^{ }}\)
=> Tam giác OAH = tam giác OCH (ch-cgv) => AH=HC (2 cạnh tương ứng)
<=> H là trung điểm cạnh AC (đpcm)
b) Ta có: AC vuông góc OM tại H, AH=CH nên OM là đường trung trực của AH => MA=MC
Xét tam giác OAM và tam giác OCM, có: OA=OC=R ; MA=MC ; OM chung
=> tam giác OAM = tam giác OCM(c.c.c) => \(\widehat{OAM}=\widehat{OCM}=90^o\)
<=> MC là tiếp tuyến của (O) (đpcm)
Mình giải câu 2
Góc AQB nội tiếp chắn cung AB
BAM góc tạo bởi dây cung chắn chung AB
Nên AQB = BAM
BAM=BKM góc nội tiếp chắn cung BM (do AKBM nội tiếp cái này phải chứng minh thêm MAOKM cùng thuộc đường tròn dễ)
suy ra AQB = BKM mà vị trí đồng vị nên suy ra các kiểu
a: Xét (O) có
MA là tiếp tuyến có A là tiếp điểm
MB là tiếp tuyến có B là tiếp điểm
Do đó: MA=MB
Ta có: IA=IB
nên I nằm trên đường trung trực của AB(1)
ta có: MA=MB
nên M nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra IM là đường trung trực của AB
hay IM\(\perp\)AB
b: Xét (I) có
ΔABE nội tiếp đường tròn
BE là đường kính
Do đó: ΔABE vuông tại A
Ta có: BA\(\perp\)IM
BA\(\perp\)AE
Do đó: AE//MI
a: Xét tứ giác DAOB có
\(\widehat{DAO}+\widehat{DBO}=180^0\)
Do đó: DAOB là tứ giác nội tiếp
b: Xét (O) có
DA là tiếp tuyến
DB là tiếp tuyến
Do đó: DA=DB
hay D nằm trên đường trung trực của AB(1)
Ta có: OA=OB
nên O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OD⊥AB
Xét ΔOAD vuông tại A có AH là đường cao
nên \(OH\cdot OD=OA^2\)
a) xét tứ giác ABOC có
\(\widehat{ABO}+\widehat{ACO}=90^0\)(AB , AC tiếp tuyến)
=>\(\widehat{ABO}+\widehat{ACO}=180^0\)
=> tứ giác ABOC nội tiếp
=> \(\widehat{BOA}=\widehat{ACB}\)( chắn \(\widebat{BA}\))
b) ta có \(\hept{\begin{cases}AB=AC\left(cmt\right)\\OB=OC=R\end{cases}}\)
=> AO là đường trung trực của BC
=> \(AH\perp BC,HB=HC\)
=> \(\Delta IHB=\Delta IHC\left(c.g.c\right)\)
=>\(\widehat{HBI}=\widehat{ICH}=>\widebat{CI}=\widebat{BI}\)
\(=>\widehat{IBA}=\widehat{IBH}\)( chắn CI , BI )
=> IB là tia phân giác của góc ABC
c)xét tam giác OCA có \(CH\perp CA=>OC^2=OH.OA\)
mà \(OC=OD=>OC^2=OD^2\)
=>\(OD^2=OH.OA\)
mình làm lại nha
câu c, d nè :
c) áp dụng hệ thức lượng trong tam giác zuông ABO ta có
\(OH.OA=OB^2=OD^2=>OH.OA=OD^2\Leftrightarrow\)\(\frac{OH}{OD}=\frac{OD}{OA}=>\Delta OHD=\Delta ODA=>\widehat{OAD}=\widehat{ODH}\)
gọi J là là tâm đường tròn ngoại tiếp tam giác AHD
khi đó \(\widehat{OAD}=\frac{1}{2}\widehat{DJH}\)
zậy
\(\widehat{JDO}=\widehat{ODH}+\widehat{JDH}=\frac{1}{2}\widehat{DJH}+\widehat{JDH}=\frac{1}{2}\left(\widehat{DJH}+2\widehat{JDH}\right)=\frac{1}{2}.180^0=90^0\)
=> OD là ....
d) CHỉ ra M, N thuộc trung trực AH
theo cm ở cau C thì \(OD\perp JD\)nên J thuộc tiếp tuyến tại D của (O)
Mặt khác J là tâm đường tròn ngoại tiếp tam giác AHD nên J thuộc trung trực của AC
zậy J là giao điểm của tiếp tuyến tại D của (O) zà đường trung trực AD
=> J trùng E
zậy E là tâm đường tròn ngoại tiếp tam giác AHD nên E thuộc trung trực của AH
mặt khác M , N đều thuộc trung trực của AH nên M ,E ,N thẳng hàng
a: Xét tứ giác OAMB có
góc OAM+góc OBM=180 độ
nên OAMB là tứ giác nội tiêp
b: Xét (O) có
MA,MB là tiếp tuyến
nên MA=MB
mà OA=OB
nên OM là trung trực của AB
=>OM vuông góc với AB