Cho ∆ABC, vuông tại A,(AC>AB)đường trung tuyến AM ,gọi D là trung điểm của AB gọi E là điểm đối xứng của M qua D a, chứng minh rằng :MD vuông góc AB b,chứng minh tứ giác AMBE là hình thoi c,cho BC=9cm,AC=7cm tính chu vi của hình thoi AMBE d, tính diện tích của tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAC có BD/BA=BM/BC
nên MD//AC
=>MD vuông góc với AB
b: Xét tứgiác AMBE có
D là trung điểm chung của AB và ME
ME vuông góc với AB
Do đó: AMBE là hình thoi
c: AM=BC/2=4,5cm
=>C=4,5*4=18cm
a)Ta có
BK=KC (GT)
AK=KD( Đối xứng)
suy ra tứ giác ABDC là hình bình hành (1)
mà góc A = 90 độ (2)
từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật
b) ta có
BI=IA
EI=IK
suy ra tứ giác AKBE là hình bình hành (1)
ta lại có
BC=AD ( tứ giác ABDC là hình chữ nhật)
mà BK=KC
AK=KD
suy ra BK=AK (2)
Từ 1 và 2 suy ra tứ giác AKBE là hình thoi
c) ta có
BI=IA
BK=KC
suy ra IK là đường trung bình
suy ra IK//AC
IK=1/2AC
mà IK=1/2EK
Suy ra EK//AC
EK=AC
Suy ra tứ giác AKBE là hình bình hành
A, Xét tứ giác ABCD có
MB=MC=1/2BC(M là trung điểm BC-gt)
MD=MA=1/2AD( M là trung điểm AD-gt)
mà AD cắt BC tại M
->ABCD là hbh
Ta có ABCD là hình bh ( cmt)
mà có góc BAC = 90 độ( tam gáic ABC vuông tại A-gt)
-> ABCD là hcn(Đpcm)
B, Gọi I là giao điêm của AB và EM
Ta có góc BIM=90 độ( do M đối E qua AB-gt)
góc BAC = 90 độ( tam giác ABC vuông tại A-gt)
mà hai góc vị trí đồng vị
-> IM song song AC
Xét tam giác BAC có
M là trung điểm BC(gt)
IM song song AC( cmt)
-> I là trung điểm AB
Ta có
IA=IB=1/2AB( I là trung điểm AB-cmt)
IE=IM=1/2EM(M đối E qua AB-gt)
mà EM cắt AB tại I
-> EAMB là hình bình hành
Mà AB vuông góc EM ( M đối E qua AB-gt)
-> EAMB là hình thoi( đpcm)
Xong rùi nha bn
a: Xét tứ giác AMBE có
D là trung điểm của AB
D là trung điểm của ME
Do đó: AMBE là hình bình hành
mà MA=MB
nên AMBE là hình thoi
a) Ta có: E và M đối xứng với nhau qua D
=> DE = DM ; ME vuông góc AB
Ta có BD = DA ( D là trun điểm AB )
mà ME vuông góc AB ( cmt )
=> AB là trung trực của ME hay E và M đối xứng nhau qua D
b) Xét Tam giác ABC có:
M là trung điểm BC ( gt )
D là trung điểm AB ( gt)
=> DM là đường trung bình tam giác ABC
=> DM // AC; DM = 1/2AC
mà E thuộc DM
nên EM // AC
Xét tứ giác AEMC có:
EM // AC ( cmt)
EM = AC ( cùng = 2DM )
=> Tứ giác AEMC là hình bình hành( tứ giác có 2 cạnh đối vừa // vừa = nhau là hình bình hành)
c) Xét tứ giác AEBM có:
ED = DM ( gt )
DB = AD ( gt )
=> Tứ giác AEBM là hình bình hành ( D/h 5 )
mà AB vuông góc EM
=> hbh AEBM là hình thoi ( D/h 3 )
d) Ta có : AM = 1/2BC ( trung tuyến ứng với cạnh huyền)
=> AM = 1/2 . BC = 1/2. 5 = 2,5 (cm)
Chu vi hình thoi AEBM:
2,5 . 4 =10 (cm)
a: Xét tứ giác ADME có
góc ADM=góc AEM=góc DAE=90 độ
nên ADME là hình chữ nhật
b: Xét tứ giác PEDQ có
M là trung điểm chung của PD và EQ
PD vuông góc với EQ
Do đó: PEDQ là hình thoi
a: Xét ΔBAC có BD/BA=BM/BC
nên MD//AC
=>MD vuông góc với AB
b: Xét tứgiác AMBE có
D là trung điểm chung của AB và ME
ME vuông góc với AB
Do đó: AMBE là hình thoi
c: AM=BC/2=4,5cm
=>C=4,5*4=18cm