K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 12 2022

Lời giải:

Gọi độ dài các cạnh của tam giác là $a,b,c$ lần lượt tỉ lệ với $4,5,7$. Khi đó, a là cạnh nhỏ nhất.

Theo bài ra ta có:

$\frac{a}{4}=\frac{b}{5}=\frac{c}{7}$

$a+b+c-2a=b+c-a=24$

Áp dụng tính chất dãy tỉ số bằng nhau: 

$\frac{a}{4}=\frac{b}{5}=\frac{c}{7}=\frac{b+c-a}{5+7-4}=\frac{24}{8}=3$

$\Rightarrow a=4.3=12$ (cm); $b=3.5=15$ (cm); $c=3.7=21$ (cm)

29 tháng 12 2022

:))) cảm ơn 

28 tháng 11 2021

\(a,\) Gọi độ dài 3 cạnh là a,b,c(cm;0<a<b<c<120)

\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{120}{12}=10\\ \Rightarrow \begin{cases} a=10.3=30\\ b=10.4=40\\ c=10.5=50 \end{cases} \)

Vậy ...

\(b,\) Gọi độ dài 3 cạnh là a,b,c(cm;0<a<b<c)

\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{c-a}{7-3}=\dfrac{80}{4}=20\\ \Rightarrow \begin{cases} a=20.3=60\\ b=20.5=100\\ c=20.7=140 \end{cases}\\ \Rightarrow P=a+b+c=300(cm)\)

22 tháng 5 2017

Gọi độ dài các cạnh của tam giác lần lượt là x, y, z (cm)

Theo đề bài ta có x + y + z = 36 và

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Chọn đáp án B

a: Gọi độ dài ba cạnh lần lượt là a,b,c

Theo đề, ta có: a/4=b/5=c/7 và a+b+c-2a=2

Áp dụng tính chất của DTBSN, ta được:

\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b+c-2a}{4+5+7-2\cdot4}=\dfrac{2}{8}=\dfrac{1}{4}\)

=>a=1; b=5/4; c=7/4

b: Gọi độ dài ba cạnh lần lượt là a,b,c

Theo đề, ta có:

a/2=b/4=c/5

Áp dụng tính chất của DTSBN, ta đc:

\(\dfrac{a}{2}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{2+4+5}=\dfrac{33}{11}=3\)

=>a=6; b=12; c=15

11 tháng 1 2018

Theo bài ra ta có: Độ dài các cạnh góc vuông tỉ lệ với 3 và 4. Nên ta có:

\(\frac{AB}{3}=\frac{AC}{4}\) \(\Rightarrow\left(\frac{AB}{3}\right)^2=\left(\frac{AC}{4}\right)^2\) \(\Rightarrow\frac{AB^2}{9}=\frac{AC^2}{16}\)

Theo định lí Py-ta-go, tam giác vuông ABC có cạnh huyền BC \(\Rightarrow AB^2+AC^2=BC^2=4^2=16\) 

                                          Áp dụng tính chất của dãy tỉ số bằng nhau ta được:

                                                \(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{9+16}=\frac{16}{25}\)

                                        \(\Rightarrow\frac{AB^2}{9}=\frac{16}{25}\Rightarrow AB^2=5,76\Rightarrow AB=2,4\left(cm\right)\) 

                                             \(\frac{AC^2}{16}=\frac{16}{25}\Rightarrow AC^2=10,24\Rightarrow AC=3,2\left(cm\right)\)     

                                           Vậy AB = 2,4 cm

                                                  AC = 3,2 cm

                                                  BC = 4 cm                     

Gọi hai cạnh góc vuông cần tìm là AB,AC và cạnh huyền là BC(Điều kiện: AB>0; AC>0; BC>0)

Theo đề, ta có: AB:AC=3:4 và AB+AC+BC=24(cm)

\(\dfrac{AB}{AC}=\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{AB}{3}=\dfrac{AC}{4}\)

Đặt \(\dfrac{AB}{3}=\dfrac{AC}{4}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}AB=3k\\AC=4k\end{matrix}\right.\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow BC^2=\left(3k\right)^2+\left(4k\right)^2=25k^2\)

hay BC=5k

Ta có: AB+AC+BC=24cm(gt)

\(\Leftrightarrow3k+5k+4k=24\)

\(\Leftrightarrow12k=24\)

hay k=2

⇔AB=6cm; AC=8cm

Vậy: Độ dài hai cạnh góc vuông cần tìm là 6cm và 8cm

Tìm được độ dài các cạnh của tam giác lần lượt là:

6 cm, 8 cm, 10 cm.

13 tháng 1 2021

Gọi a,b,c là độ dài 3 cạnh của tam giác đó

Theo đề ta có:

\(\dfrac{a}{3}=\dfrac{b}{4}\)

Đặt: \(\dfrac{a}{3}=\dfrac{b}{4}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=3k\\b=4k\end{matrix}\right.\)

Tam giác vuông. Áp dụng định lí Pitago ta có: 

a2 + b2 = c2

=> (3k)2 + (4k)2 = c2

=> 9k2 + 16k2 = c2

=> 25k2 = c2

=> c = 5k

Theo đề ta có:

a + b + c = 24

=> 3k + 4k + 5k = 24

=> 12k = 24

=> k = 2

Mà: \(\left\{{}\begin{matrix}a=3k\\b=4k\\c=5k\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=3.2=6\left(cm\right)\\b=4.2=8\left(cm\right)\\c=5.2=10\left(cm\right)\end{matrix}\right.\)

Vậy: Độ dài 3 cạnh của tam giác đó là 6, 8, 10

9 tháng 5 2019

Tìm được độ dài các cạnh của tam giác lần lượt là:

6 cm, 8 cm, 10 cm.