tìm số nguyên n để phân số B = \(\frac{2n+3}{7}\) có giá trị là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\frac{6n+7}{2n+3}=\frac{6n+9}{2n+3}-\frac{2}{2n+3}\) nguyên
<=> 2n + 3 thuộc Ư(2) = {-2; -1; 1; 2}
<=> 2n thuộc {-5; -4; -2; -1}
Vì n nguyên nên n thuộc {-2; -1}
b) A có GTNN <=> \(\frac{2}{2n+3}\) có GTLN
<=> 2n + 3 là số nguyên dương nhỏ nhất
<=> 2n + 3 = 1
<=> 2n = -2
<=> n = -1
a)\(A=\frac{6n+7}{2n+3}=\frac{2n+2n+2n+3+4}{2n+3}=\frac{4}{2n+3}\)
\(\Rightarrow2n+3\in\text{Ư}\left(4\right)=\left\{1;2;4;-1;-2;-4\right\}\)
Nếu 2n+3 = 1 => n = -2 (nhận)
Nếu 2n+3 = 2 => n =-0,5 (loại)
Nếu 2n + 3 = 4 => n = 3,5 (loại)
Nếu 2n + 3 = -1 => n = 1 (nhận)
Nếu 2n + 3 = -2 => n = -2,5 (loại)
Nếu 2n + 3 = -4 => n =-3,5 (loại)
Vậy n \(\in\) {-2;1}
b) A GTNN => \(\frac{2}{2n+3}\) có GTLN
=> 2n + 3 là số nguyên dương nhỏ nhất
=> 2n + 3 = 1
=> 2n = -2
=> n = -1
\(B=\frac{6n+7}{2n+3}=\frac{3\left(2n+3\right)-2}{2n+3}=\frac{3\left(2n+3\right)}{2n+3}-\frac{2}{2n+3}=3-\frac{2}{2n+3}\in Z\)
=>2 chia hết 2n+3
=>2n+3 thuộc Ư(2)={1;-1;2;-2}
=>2n thuộc {-2;-4} (vì n nguyên)
=>n thuộc {-1;-2}
Để B đạt GTNN
=>2n+3 đạt GTLN và 6n+7 đạt GTNN
Với n=-2 =>Bmin=\(\frac{6\cdot\left(-2\right)+7}{2\cdot\left(-1\right)+3}=\frac{-5}{-1}=5\)
- n=-1 =>Bmin=\(\frac{6\cdot\left(-1\right)+7}{2\cdot\left(-1\right)+3}=\frac{1}{1}=1\)
Vì 5>1 =>Bmin=1 xảy ra khi n=-1
a) \(B=\frac{6n+7}{2n+3}=\frac{6n+9-2}{2n+3}=\frac{3\left(2n+3\right)-2}{2n+3}=3-\frac{2}{2n+3}\)mà để \(B\in Z\)thì \(\frac{2}{2n+3}\in Z\)
=> 2n + 3 = -2;-1;1;2 => 2n = -5 ; -4 ; -2 ; -1 => n = -2 ; -1 vì nguyên
b)Xét \(B=3-\frac{2}{2n+3}\)vừa phân tích ở câu a , ta thấy B nhỏ nhất khi \(\frac{2}{2n+3}\) lớn nhất
=> 2n + 3 dương , nhỏ nhất nên chỉ có thể bằng 1 => 2n = -2 => n = 1
a, để B là số nguyên thì 6n+7 chia hết cho 2n+3
=> 6n+9-2 chia hết cho 2n+3
Vì 6n+9 chia hết cho 2n+3
=> 2 chia hết cho 2n+3
Mà 2n+3 lẻ
=> 2n+3 thuộc ước lẻ của 2
2n+3 | n |
1 | -1 |
-1 | -2 |
KL: n\(\in\){-1; -2}
Bài 1:
a) ta có: \(A=\frac{2n-1}{n-3}=\frac{2n-6+5}{n-3}=\frac{2.\left(n-3\right)+5}{n-3}=\frac{2.\left(n-3\right)}{n-3}+\frac{5}{n-3}\)\(=2+\frac{5}{n-3}\)
Để A có giá trị nguyên
\(\Rightarrow\frac{5}{n-3}\in z\)
\(\Rightarrow5⋮n-3\Rightarrow n-3\inƯ_{\left(5\right)}=\left(5;-5;1;-1\right)\)
nếu n-3 = 5 => n = 8 (TM)
n-3 = -5 => n= -2 (TM)
n-3 = 1 => n = 4 (TM)
n-3 = -1 => n = 2 (TM)
KL: \(n\in\left(8;-2;4;2\right)\)
b) ta có: \(A=2+\frac{5}{n-3}\) ( pa)
Để A đạt giá trị lớn nhất
=> \(\frac{5}{n-3}\le5\)
Dấu "=" xảy ra khi
\(\frac{5}{n-3}=5\)
\(\Rightarrow n-3=5:5\)
\(n-3=1\)
\(n=4\)
KL: n =4 để A đạt giá trị lớn nhất
Bài 2 bn làm tương tự nha!
a) \(M=\frac{2n-7}{n-5}=\frac{2n-10}{n-5}+\frac{3}{n-5}=2+\frac{3}{n-5}\)
Để M là số nguyên thì \(\frac{3}{n-5}\) là số nguyên <=> 3 chia hết cho n-5
<=>n-5\(\in\)Ư(3)={-3;-1;1;3} <=> n\(\in\){2;4;6;8}
Ta có :
\(A=\frac{2n+3}{2n-3}=\frac{2n-3+6}{2n-3}=1+\frac{6}{2n-3}\)
để A \(\in\)Z \(\Leftrightarrow\)\(1+\frac{6}{2n-3}\)\(\in\)Z \(\Leftrightarrow\)\(\frac{6}{2n-3}\)\(\in\)Z \(\Leftrightarrow\)2n - 3 \(\in\)Ư ( 6 ) = { 1 ; -1 ; 2 ; -2 ; 3 ; -3 ; 6 ; -6 }
Lập bảng ta có :
2n-3 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | 2 | 1 | 5/2 | 1/2 | 3 | 0 | 9/2 | -3/2 |
vì n \(\in\)Z nên n = { 2 ; 1 ; 3 ; 0 }
Ta có : \(A=\frac{2n+3}{2n-3}=\frac{\left(2n-3\right)+6}{2n-3}=1+\frac{6}{2n-3}\)
Để \(A\in N\) thì \(\frac{6}{2n-3}\in N\)
\(\Rightarrow6⋮2n-3\)
\(\Leftrightarrow2n-3\inƯ_{\left(6\right)}=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Ta có bảng sau :
2n-3 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
2n | 4 | 2 | 5 | 1 | 6 | 0 | 9 | -3 |
n | 2 | 1 | 2,5 | 0,5 | 3 | 0 | 4,5 | -1,5 |
Vậy ...
a) A \(=\frac{2n-1}{n-3}=\frac{2n-6}{n-3}+\frac{5}{n-3}\) nguyên
<=> n - 3 thuộc Ư(5) = {-5; -1; 1; 5}
<=> n thuộc {-2; 2; 4; 8}
b) A lớn nhất <=> \(\frac{5}{n-3}\) lớn nhất <=> n - 3 là số nguyên dương nhỏ nhất
<=> n - 3 = 1 <=> n = 4
2n + 3/7 laôs nguyên suy ra 2n +3 chia hết cho 7.
=> 7 thuộc Ư(2n + 3)
Từ đó bạn tính tiếp nhé!!!
\(\frac{2n+3}{7}\) để có giá trị là số nguyên thì :
\(\Rightarrow2n+3\inƯ\left(7\right)=\left\{-1,-7,1,7\right\}\)
Ta có bảng :
Vậy \(n=\left\{-2,-5,-1,2\right\}\)