K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{2}{3}A=\dfrac{2}{3}-\left(\dfrac{2}{3}\right)^2+\left(\dfrac{2}{3}\right)^3-...+\left(\dfrac{2}{3}\right)^{2019}-\left(\dfrac{2}{3}\right)^{2020}\)

=>\(\dfrac{5}{3}A=1-\left(\dfrac{2}{3}\right)^{2020}=1-\dfrac{2^{2020}}{3^{2020}}=\dfrac{3^{2020}-2^{2020}}{3^{2020}}\)

=>\(A=\dfrac{3^{2020}-2^{2020}}{3^{2020}}:\dfrac{5}{3}=\dfrac{3^{2020}-2^{2020}}{5\cdot3^{2019}}\) ko là số nguyên

NV
4 tháng 10 2021

\(B=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\)

\(3B=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)

\(\Rightarrow3B-B=1-\dfrac{1}{3^{100}}\)

\(\Rightarrow2B=1-\dfrac{1}{3^{100}}\)

\(0< \dfrac{1}{3^{100}}< 1\Rightarrow0< 1-\dfrac{1}{3^{100}}< 1\)

\(\Rightarrow0< 2B< 1\Rightarrow0< B< \dfrac{1}{2}\Rightarrow\) B không phải số nguyên

3 tháng 12 2021

\(\dfrac{x}{2018}=\dfrac{y}{2019}=\dfrac{x-y}{-1};\dfrac{y}{2019}=\dfrac{z}{2020}=\dfrac{y-z}{-1};\dfrac{x}{2018}=\dfrac{z}{2020}=\dfrac{x-z}{-2}\\ \Leftrightarrow\dfrac{x-y}{-1}=\dfrac{y-z}{-1}=\dfrac{x-z}{-2}\\ \Leftrightarrow2\left(x-y\right)=2\left(y-z\right)=x-z\\ \Leftrightarrow\left(x-z\right)^3=8\left(x-y\right)^3=8\left(x-y\right)^2\left(x-y\right)=8\left(x-y\right)^2\left(y-z\right)\)

a: \(\left(\dfrac{4}{9}+\dfrac{1}{3}\right)^2=\dfrac{49}{81}\)

b: \(\left(\dfrac{1}{2}-\dfrac{3}{5}\right)^3=-\dfrac{1}{1000}\)

c: \(\left(-\dfrac{10}{3}\right)^5\cdot\left(-\dfrac{6}{4}\right)^4=-\dfrac{6250}{3}\)

d: \(\left(\dfrac{3}{4}\right)^3:\left(\dfrac{3}{4}\right)^2:\left(-\dfrac{3}{2}\right)^3=-\dfrac{2}{9}\)

17 tháng 1 2021

\(A=1.2.3...2018\left[\left(1+\dfrac{1}{2018}\right)+\left(\dfrac{1}{2}+\dfrac{1}{2017}\right)+...+\left(\dfrac{1}{1009}+\dfrac{1}{1010}\right)\right]\)

\(A=1.2.3...2018.2019\left(\dfrac{1}{1.2018}+\dfrac{1}{2.2017}+...+\dfrac{1}{1009.1010}\right)\)

\(\dfrac{A}{2019}=1.2.3...2018\left(\dfrac{1}{1.2018}+\dfrac{1}{2.2017}+...+\dfrac{1}{1009.1010}\right)\).

Rõ ràng tích 1 . 2 ... 2018 chia hết cho các tích 1 . 2018; 2 . 2017; ...; 1009 . 1010; do đó \(\dfrac{A}{2019}\) là số tự nhiên.

Vậy A chia hết cho 2019.