Cho \(a+b+c=2009\)
và \(\frac{1}{a+b}=\frac{1}{b+c}=\frac{1}{c+a}=\frac{1}{7}\)
Tính \(S=\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)
\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b+c-c}{c\left(a+b+c\right)}=0\)
\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c\left(a+b+c\right)}\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(\frac{ca+cb+c^2+ab}{abc\left(a+b+c\right)}\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b\left(a+c\right)+c\left(a+c\right)\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
\(\Rightarrow a+b=0\Rightarrow a=-b\Rightarrow a^{2009}=-b^{2009}\)
\(\frac{1}{a^{2009}}+\frac{1}{b^{2009}}+\frac{1}{c^{2009}}=\frac{1}{c^{2009}}\) (1)
\(\frac{1}{a^{2009}+b^{2009}+c^{2009}}=\frac{1}{c^{2009}}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{1}{a^{2009}}+\frac{1}{b^{2009}}+\frac{1}{c^{2009}}=\frac{1}{a^{2009}+b^{2009}+c^{2009}}\) (đpcm)
P/s: Đề đúng phải là CM \(\frac{1}{a^{2009}}+\frac{1}{b^{2009}}+\frac{1}{c^{2009}}=\frac{1}{a^{2009}+b^{2009}+c^{2009}}\)
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)
\(\Leftrightarrow a^2b+ab^2+b^2c+bc^2+c^2a+ca^2+3abc-abc=0\)
\(\Leftrightarrow\left(a^2b+ab^2\right)+\left(c^2a+bc^2\right)+\left(ca^2+2abc+b^2c\right)=0\)
\(\Leftrightarrow ab\left(a+b\right)+c^2\left(a+b\right)+c\left(a+b\right)^2=0\)
\(\Leftrightarrow\left(a+b\right)\left(ab+c^2+bc+ca\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
=> a+b=0 hoặc b+c=0 hoặc c+a=0
=> a=-b hoặc b=-c hoặc c=-a
Không mất tổng quát g/sử a=-b
Khi đó: \(\frac{1}{a^{2009}}+\frac{1}{b^{2009}}+\frac{1}{c^{2009}}=-\frac{1}{b^{2009}}+\frac{1}{b^{2009}}+\frac{1}{c^{2009}}=\frac{1}{c^{2009}}\)
và \(\frac{1}{a^{2009}+b^{2009}+c^{2009}}=\frac{1}{-b^{2009}+b^{2009}+c^{2009}}=\frac{1}{c^{2009}}\)
=> \(\frac{1}{a^{2009}}+\frac{1}{b^{2009}}+\frac{1}{c^{2009}}=\frac{1}{a^{2009}+b^{2009}+c^{2009}}\)
T>a có : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
=>\(\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)
=> \(\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)
=> \(ab\left(a+b+c\right)+bc\left(a+b+c\right)+ca\left(a+b+c\right)=abc\)
=> \(a^2b+ab^2+abc+abc+b^2c+bc^2+ca^2+abc+ac^2=abc\)
=> \(a^2b+ab^2+b^2c+bc^2+ca^2+ac^2+2abc=0\)
=> \(\left(a^2b+2abc+bc^2\right)+\left(ab^2+2abc+ac^2\right)+\left(b^2c-2abc+ca^2\right)=0\)
=> \(b\left(a+c\right)^2+a\left(b+c\right)^2+c\left(a-b\right)^2=0\)
=> \(\hept{\begin{cases}a+c=0\\b+c=0\\a-b=0\end{cases}\Rightarrow\hept{\begin{cases}a=-c\\b=-c\\a=b\end{cases}}}\)
=> trong 3 số a,b,c có 2 số đối nhau ( đpcm)
Thay a=-c ,b = -c vào \(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{\left(-c\right)^{2019}}+\frac{1}{\left(-c\right)^{2019}}+\frac{1}{c^{2019}}\)
\(=-\frac{1}{c^{2019}}\)(1)
\(\frac{1}{a^{2019}+b^{2019}+c^{2019}}=\frac{1}{\left(-c\right)^{2019}+\left(-c\right)^{2019}+c^{2019}}=-\frac{1}{c^{2019}}\) (2)
Từ (1),(2) => \(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{a^{2019}+b^{2019}+c^{2019}}\) (đpcm)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left(a+b\right)\left[ab+c\left(a+b+c\right)\right]=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Rightarrow a=-b\left(h\right)b=-c\left(h\right)c=-a\)
Thay vào tính nốt
\(S=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
\(S+3=\left(1+\frac{a}{b+c}\right)+\left(1+\frac{b}{a+c}\right)+\left(1+\frac{c}{a+b}\right)\)
\(S+3=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}=\left(a+b+c\right).\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\)
\(S+3=\frac{2014.1}{2014}=1\Rightarrow S=1-3=-2\)
=> (a+b+c).(1/a+b + 1/b+c +1/c+a) = 2017/90
=> a+b+c/a+b + a+b+c/b+c + a+b+c/c+a = 2017/90
=> 1 + c/a+b + 1 + a/b+c + 1 + b/c+a = 2017/90
=> a/b+c + b/c+a +c/a+b = 2017/90 - 3 = 1747/90
Vậy S = 1747/90
Tk mk nha
a+b+c = 2010 => a+b=2010-c ; b+c=2010-a ; c+a=2010-b
=> S = a/2010-a + b/2010-b + c/2010-c = 2010/2010-a - 1 + 2010/2010-b -1 + 2010/2010-c - 1
= 2010/b+c - 1 + 2010/c+a - 1 + 2010/a+b - 1
= 2010.(1/b+c + 1/c+a + 1/a+b) - 3
= 2010.1/3 - 3 = 667
Vậy S = 667
Tk mk nha
Ta có: \(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=2010\cdot\frac{1}{3}\)
\(\Rightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=\frac{2010}{3}\)
\(\Rightarrow1+\frac{c}{a+b}+1+\frac{a}{b+c}+1+\frac{b}{c+a}=\frac{2010}{3}\)
\(\Rightarrow S+3=\frac{2010}{3}\)
\(\Rightarrow S=\frac{2010}{3}-3=\frac{2001}{3}=667\)
Ta có :
\(a+b+c=2009\)
\(\Rightarrow\frac{1}{a+b+c}=\frac{1}{2009}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)
\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{c}-\frac{1}{a+b+c}\right)=0\)
\(\Rightarrow\frac{a+b}{ab}+\frac{\left(a+b+c\right)-c}{c\left(a+b+c\right)}=0\)
\(\Rightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)
\(\Rightarrow\left(a+b\right)\left(\frac{c^2+ab+bc+ca}{abc\left(a+b+c\right)}\right)=0\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}a+b=0\\b+c=0\\c+a=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}a=2009\\b=2009\\c=2009\end{array}\right.\)
(+) a = 2009
=> P = 0
(+) b = 2009
=> P = 0
(+) c = 2009
=> P = 0
Vậy P = 0
a+ b + c=2009 mà. Sao kết quả a=2009: b=2009 và c cùng = 2009
Ta có :
\(S+3=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)+\left(\frac{c}{a+b}+1\right)\)
\(=\left(\frac{a}{b+c}+\frac{b+c}{b+c}\right)+\left(\frac{b}{a+c}+\frac{a+c}{a+c}\right)+\left(\frac{c}{a+b}+\frac{a+b}{a+b}\right)\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}\)
\(=\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
\(=2009.\frac{1}{7}=287\)
\(\Rightarrow S=287-3=284\)