\(A=1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+.......+\left(\dfrac{1}{2}\right)^{2022}\) Giups mik với mik cần gấp ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`P=((3+x)/(3-x)-(3-x)/(3+x)+(4x^2)/(x^2-9)):((2x+1)/(x+3)-1)`
`=((4x^2-(3-x)^2-(3+x)^2)/(x^2-9)):((2x+1-x-3)/(x+3))`
`=((4x^2-x^2+6x-9-x^2-6x-9)/(x^2-9)):((x-2)/(x+3))`
`=((2x^2-18)/(x^2-9))*(x+3)/(x-2)`
`=((2(x^2-9))/(x^2-9))*(x+3)/(x-2)`
`=(2x+6)/(x-2)`
ĐKXĐ: \(x\ne\pm3;x\ne-\dfrac{1}{2};x\ne2\)
\(P=\left(\dfrac{3+x}{3-x}-\dfrac{3-x}{3+x}-\dfrac{4x^2}{\left(3-x\right)\left(3+x\right)}\right):\dfrac{2x+1-x-3}{x+3}\)
\(=\dfrac{\left(3+x\right)^2-\left(3-x\right)^2-4x^2}{\left(3+x\right)\left(3-x\right)}:\dfrac{x-2}{x+3}\)
\(=\dfrac{\left(3+x-3+x\right)\left(3+x+3-x\right)-4x^2}{\left(x+3\right)\left(3-x\right)}.\dfrac{x+3}{x-2}\)
\(=\dfrac{12x-4x^2}{3-x}\cdot\dfrac{1}{x-2}\)
\(=\dfrac{4x\left(3-x\right)}{3-x}\cdot\dfrac{1}{x-2}\) \(=\dfrac{4x}{x-2}\)
\(=\left(\dfrac{88}{132}-\dfrac{33}{132}+\dfrac{60}{132}\right):\left(\dfrac{55}{132}-\dfrac{132}{132}-\dfrac{84}{132}\right)\)
\(=\dfrac{115}{-161}=-\dfrac{115}{161}\)
a, \(\dfrac{5}{7}+\left(\dfrac{3}{5}+\dfrac{-5}{7}\right)\)
\(=\dfrac{5}{7}+\dfrac{-5}{7}+\dfrac{3}{5}
=0+\dfrac{3}{5}=\dfrac{3}{5}\)
b, \(=\dfrac{-3}{4}-\dfrac{15}{14}:\dfrac{-5}{7}+\left(-1\right)^2=\dfrac{-3}{4}-\dfrac{-3}{2}+1=\dfrac{-3}{4}-\dfrac{-6}{4}+1=\dfrac{3}{4}+1=\dfrac{7}{4}\)
c, \(\dfrac{-5}{9}+\left(\dfrac{-2}{3}\right)^2.\left(20\%-1.2\right)=\dfrac{-5}{9}+\dfrac{4}{9}x\left(\dfrac{1}{5}-\dfrac{6}{5}\right)=\dfrac{-5}{9}+\dfrac{4}{9}x\left(-1\right)=\dfrac{-5}{9}+\dfrac{-4}{9}=-1\)
Bài 1:
a) \(\dfrac{5}{7}+\left(\dfrac{3}{5}+\dfrac{-5}{7}\right)\)\(=\left(\dfrac{5}{7}+\dfrac{-5}{7}\right)+\dfrac{3}{5}\)\(=0+\dfrac{3}{5}=\dfrac{3}{5}\)
b) \(\dfrac{-3}{4}-\dfrac{15}{14}:\dfrac{-5}{7}+\left(-1\right)^2\)\(=\dfrac{-3}{4}-\dfrac{15}{14}:\dfrac{-5}{7}+1\)\(=\dfrac{-3}{4}-\dfrac{-3}{2}+1\)
\(=\dfrac{3}{4}+1\)\(=\dfrac{7}{4}\)
\(\dfrac{1}{2}\times\dfrac{2}{3}\times\dfrac{3}{4}\times\dfrac{4}{5}=\dfrac{1}{5}\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\geq \frac{9}{a+b+b+c+c+a}=\frac{9}{2(a+b+c)}\)
\(\Rightarrow \text{VT}\geq \frac{9(a^2+b^2+c^2)}{2(a+b+c)}\) \((1)\)
Theo hệ quả của BĐT Am-Gm: \(a^2+b^2+c^2\geq ab+bc+ac\)
\(\Rightarrow 3(a^2+b^2+c^2)\geq (a+b+c)^2\) \((2)\)
Từ \((1),(2)\Rightarrow \text{VT}\geq \frac{3}{2}(a+b+c)\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c\)
\(\dfrac{\dfrac{4}{5}:\left(\dfrac{4}{5}\cdot\dfrac{5}{4}\right)}{\dfrac{16}{25}-\dfrac{1}{25}}+\dfrac{\left(\dfrac{27}{25}-\dfrac{2}{25}\right):\dfrac{4}{7}}{\left(\dfrac{59}{9}-\dfrac{13}{4}\right)\cdot\dfrac{36}{17}}+\left(\dfrac{6}{5}\cdot\dfrac{1}{2}\right):\dfrac{4}{5}\)
\(=\dfrac{4}{5}:\dfrac{3}{5}+\dfrac{7}{4}:7+\dfrac{3}{5}:\dfrac{4}{5}\)
\(=\dfrac{4}{3}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\dfrac{7}{3}\)
1) Ta có
\(C=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{2022}\right)\)
\(C=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{2021}{2022}\)
\(C=\dfrac{1}{2022}\)
2) \(A=\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\)
\(\Rightarrow3A=1-\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\)
\(\Rightarrow4A=A+3A\) \(=1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...-\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\)
\(\Rightarrow12A=3.4A=3-1+\dfrac{1}{3}-\dfrac{1}{3^2}+...-\dfrac{1}{3^{98}}-\dfrac{100}{3^{99}}\)
\(\Rightarrow16A=12A+4A=\left(3-1+\dfrac{1}{3}-\dfrac{1}{3^2}+...-\dfrac{1}{3^{98}}-\dfrac{100}{3^{99}}\right)+\left(1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...-\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\right)\)
\(=3-\dfrac{101}{3^{99}}-\dfrac{100}{3^{100}}\) \(< 3\). Từ đó suy ra \(A< \dfrac{3}{16}\)
\(\left(-\dfrac{2}{5}\right)^2\cdot\left|\dfrac{1}{3}-\dfrac{3}{5}\right|-\dfrac{2}{5}\cdot\sqrt{\dfrac{1}{25}}+\dfrac{4}{3}\)
\(=\dfrac{4}{25}\cdot\dfrac{4}{15}-\dfrac{2}{5}\cdot\dfrac{1}{5}+\dfrac{4}{3}\)
\(=\dfrac{16}{375}-\dfrac{2}{25}+\dfrac{4}{3}\)
\(=\dfrac{16}{375}-\dfrac{30}{375}+\dfrac{500}{375}\)
\(=\dfrac{486}{375}=\dfrac{162}{125}\)
`(2/3 x +1/2) (-2x+3)=0`
\(\Rightarrow\left[{}\begin{matrix}\dfrac{2}{3}x+\dfrac{1}{2}=0\\-2x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{2}{3}x=-\dfrac{1}{2}\\-2x=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}.\dfrac{3}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{3}{2}\end{matrix}\right.\)
\(\left(\dfrac{2}{3}x+\dfrac{1}{2}\right)\cdot\left(-2x+3\right)=0\\ =>\left[{}\begin{matrix}\dfrac{2}{3}x+\dfrac{1}{2}=0\\-2x+3=0\end{matrix}\right.\\ =>\left[{}\begin{matrix}\dfrac{2}{3}x=-\dfrac{1}{2}\\-2x=-3\end{matrix}\right.\\ =>\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{3}{2}\end{matrix}\right.\)
\(\dfrac{1}{2}A=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{2023}\)
\(A-\dfrac{1}{2}A=\left(\dfrac{1}{2}\right)^{2023}-1\)
\(\dfrac{1}{2}A=\left(\dfrac{1}{2}\right)^{2023}-1\)
\(A=\dfrac{1}{2^{2022}}-2\)
12A=12+(12)2+(12)3+(12)4+...+(12)202312A=12+(12)2+(12)3+(12)4+...+(12)2023
A−12A=(12)2023−1A−12A=(12)2023−1
12A=(12)2023−112A=(12)2023−1
A=122022−2