K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: BC=10cm

AH=6*8/10=4,8cm

BH=AB^2/BC=3,6cm

b: Vì BH vuông góc với AH tại H

nên CB là tiếp tuyến của (A';AH)

29 tháng 12 2021

a: R=HC/2=6,4:2=3,2(cm)

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được: 

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{3^2}+\dfrac{1}{4^2}=\dfrac{1}{9}+\dfrac{1}{16}\)

\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{16}{144}+\dfrac{9}{144}=\dfrac{25}{144}\)

\(\Leftrightarrow AH^2=\dfrac{144}{25}\)

hay \(AH=\dfrac{12}{5}=2.4\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được: 

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow BH^2=AB^2-AH^2=3^2-2.4^2=3.24\)

hay BH=1,8

Vậy: AH=2,4; BH=1,8

b) Xét (A;AH) có 

AH là bán kính

CH⊥AH tại H(gt)

Do đó: CH là tiếp tuyến của (A;AH)(Dấu hiệu nhận biết tiếp tuyến đường tròn)

hay CB là tiếp tuyến của (A;AH)(đpcm)

c) 

1) Xét (A) có 

CH là tiếp tuyến có H là tiếp điểm(cmt)

CK là tiếp tuyến có K là tiếp điểm(gt)

Do đó: CH=CK(Tính chất hai tiếp tuyến cắt nhau)

Xét (A) có 

AH là bán kính

BH⊥AH tại H(gt)

Do đó: BH là tiếp tuyến của (O)(Dấu hiệu nhận biết tiếp tuyến đường tròn)

Xét (A) có 

BH là tiếp tuyến có H là tiếp điểm(cmt)

BI là tiếp tuyến có I là tiếp điểm(gt)

Do đó: BH=BI(Tính chất hai tiếp tuyến cắt nhau)

Ta có: BH+CH=BC(H nằm giữa B và C)

mà BH=BI(cmt)

và CH=CK(cmt)

nên BC=BI+CK(đpcm)

2) Xét (A) có 

BH là tiếp tuyến có H là tiếp điểm(cmt)

BI là tiếp tuyến có I là tiếp điểm(gt)

Do đó: AB là tia phân giác của \(\widehat{HAI}\)(Tính chất hai tiếp tuyến cắt nhau)

\(\widehat{HAI}=2\cdot\widehat{HAB}\)

Xét (A) có 

CK là tiếp tuyến có K là tiếp điểm(gt)

CH là tiếp tuyến có H là tiếp điểm(cmt)

Do đó: AC là tia phân giác của \(\widehat{HAK}\)(Tính chất hai tiếp tuyến cắt nhau)

\(\widehat{HAK}=2\cdot\widehat{CAH}\)

Ta có: \(\widehat{KAI}=\widehat{KAH}+\widehat{IAH}\)(tia AH nằm giữa hai tia AK,AI)

mà \(\widehat{HAI}=2\cdot\widehat{HAB}\)(cmt)

và \(\widehat{HAK}=2\cdot\widehat{CAH}\)(cmt)

nên \(\widehat{KAI}=2\cdot\widehat{HAB}+2\cdot\widehat{HAC}\)

\(\Leftrightarrow\widehat{KAI}=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)

\(\Leftrightarrow\widehat{KAI}=2\cdot90^0=180^0\)

hay K,A,I thẳng hàng(đpcm)

NV
21 tháng 12 2020

\(\left\{{}\begin{matrix}\widehat{DCA}=\widehat{HCA}\\\widehat{DCA}+\widehat{DAC}=90^0\\\widehat{HCA}+\widehat{HBA}=90^0\end{matrix}\right.\) \(\Rightarrow\widehat{HBA}=\widehat{DAC}\)

\(\left\{{}\begin{matrix}\widehat{DAC}+\widehat{BAE}=90^0\\\widehat{HBA}+\widehat{HAB}=90^0\end{matrix}\right.\) \(\Rightarrow\widehat{BAE}=\widehat{HAB}\)

Có \(\left\{{}\begin{matrix}AH=AE=R\\\widehat{BAE}=\widehat{HAB}\\\text{AB chung}\end{matrix}\right.\)  \(\Rightarrow\Delta AHB=\Delta AEB\)

\(\Rightarrow\widehat{E}=\widehat{H}=90^0\Rightarrow BE\) là tiếp tuyến

21 tháng 12 2020

Cách chứng minh ^BAE=^HAB khó nghĩ thật ạ.

https://h.vn/hoi-dap/tim-kiem?q=cho+tam+gi%C3%A1c+abc+c%C3%B3+ab=6cm,ac=8cm,bc=10cm++a)+ch%E1%BB%A9ng+minh+tam+gi%C3%A1c+abc+vu%C3%B4ng+t%E1%BA%A1i+a++b)+t%C3%ADnh+g%C3%B3c+b+,c+v%C3%A0+%C4%91%C6%B0%E1%BB%9Dng+cao+ah+c%E1%BB%A7a+tam+gi%C3%A1c+abc++c)+t%C3%ADnh+b%C3%A1n+k%C3%ADnh+r+c%E1%BB%A7a+%C4%91%C6%B0%C6%A1ng+tr%C3%B2n+o+n%E1%BB%99i+ti%E1%BA%BFp+tam+gi%C3%A1c+abc&id=687912

12 tháng 11 2021

\(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \left\{{}\begin{matrix}AH=\dfrac{AB\cdot AC}{BC}=4,8\left(cm\right)\\CH=\dfrac{AC^2}{BC}=6,4\left(cm\right)\\BH=\dfrac{AB^2}{BC}=3,6\left(cm\right)\end{matrix}\right.\)

12 tháng 11 2021

Áp dụng PTG ta có: \(AB^2+AC^2=BC^2\Rightarrow BC=\sqrt{6^2+8^2}=10\)

Áp dụng HTL ta có: \(AB.AC=AH.BC\Rightarrow AH=\dfrac{6.8}{10}=4,8\)

Áp dụng HTL ta có:\(BH.BC=AB^2\Rightarrow BC=\dfrac{6^2}{10}=3,6\)

Áp dụng HTL ta có:\(CH.BC=AC^2\Rightarrow BC=\dfrac{8^2}{10}=6,4\)

26 tháng 11 2022

a: 

Xét đường tròn đường kính HB có 

ΔHMB nội tiếp đường tròn

HB là đường kính

Do đó: ΔHMB vuông tại M

Xét đường tròn đường kính HC có 

ΔHNC nội tiếp đường tròn

HC là đường kính

Do đó: ΔHNC vuông tại N

Xét tứ giác AMHN có 

\(\widehat{NAM}=\widehat{ANH}=\widehat{AMH}=90^0\)

nên AMHN là hình chữ nhật

b: \(BC=\sqrt{6^2+8^2}=10\)(cm)

=>AH=6*8/10=4,8(cm)

=>MN=4,8(cm)

c: góc EMN=góc EMH+góc NMH

=góc EHM+góc NAH

=góc HAC+góc HCA=90 độ

=>MN là tiếp tuyến của (E)

góc INM=góc INH+góc MNH

=góc IHN+góc MAH

=góc BAH+góc HBA=90 độ

=>MN là tiếp tuyến của (I)

Bài 1: 

a: BC=30cm

AH=14,4(cm)

BH=10,8(cm)