K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔBAC vuông tại A có tan ABC=AC/AB

=>1/AB=tan 30

=>\(AB=\sqrt{3}\left(cm\right)\)

=>\(S_{ABC}=\dfrac{\sqrt{3}}{2}\left(cm^2\right)\)

12 tháng 9 2016

A B C H

Ta có: Tam giác ABC vuông và có góc B bằng 30 độ

=> góc C = 60 độ

=> Tam giác ABC là nửa tam giác đều

=> \(\frac{BC\sqrt{3}}{2}=AB=5\left(cm\right)\)

=> BC= \(\frac{5.2}{\sqrt{3}}=\frac{10}{\sqrt{3}}\)

=> AC = \(\frac{10}{\sqrt{3}}:2=\frac{5\sqrt{3}}{3}\) (cm)

=> AH = \(\frac{AB.AC}{BC}=\frac{5}{2}\left(cm\right)\)

b, Stam giác ABC=\(\frac{AB.AC}{2}=\frac{25\sqrt{3}}{6}\left(cm^2\right)\)

8 tháng 2 2021

A B C 16 12 H

1) Có \(\Delta ABC\) vuông 

=> S\(\Delta ABC\) = \(\dfrac{AB.AC}{2}\) = \(\dfrac{16.12}{2}\) = 96 (cm2)

2) Có \(\Delta ABC\) vuông , theo định lý Pytago ta có :

 AB +  AC2 =  BC2

=> 162 + 122 = BC2

=> 400            = BC2

=> BC             = 20 (cm)

Ta có :  S\(\Delta ABC\)  =  S\(\Delta ABH\)  +  S\(\Delta ACH\)

=>  \(\dfrac{BH.AH}{2}+\dfrac{HC.AH}{2}=S\Delta ABC\)

=>  \(\dfrac{BH.AH+HC.AH}{2}=S\Delta ABC\)

=> \(\dfrac{AH.\left(BH+HC\right)}{2}=S\Delta ABC\)

=> \(\dfrac{AH.BC}{2}\)               =  96

=> AH                         =  96 .  \(\dfrac{2}{BC}\) = 96 .  \(\dfrac{2}{20}\) = 9.6 (cm)

3) Có \(\Delta ABH\) vuông , theo định lý Pytago ta có :

    BH2 = AB2 - AH2

=>BH= 162 - 9.62 = 163.84

=> BH = 12.8 (cm)

=> CH = BC - BH = 20 - 12.8 = 7.2 (cm)

 

13 tháng 9 2016

AB=21/(3+4)x3=9 cm

AC=21-9=12cm

Tự kẻ hình bạn nhé =)))

Áp dụng định lí Pitago vào tam giác ABC , có

AB^2+AC^2=BC^2

=>thay số vào, tính được BC=15cm

Áp dụng hệ thức giữa cạnh và đường cao trong tg vuông, có:

AB^2=BHxBC

=>BH=81/15=5.4cm

=>CH=15-5.4=9.6cm

AH^2=BHxCH=5.4x9.6=51.84cm

21 tháng 10 2021

a: \(\widehat{C}=60^0\)

\(AC=6\sqrt{3}\left(cm\right)\)

\(BC=12\sqrt{3}\left(cm\right)\)

8 tháng 4 2019

a xet ABC và DEC

 chung C

bAc=eDc=90 độ 

=> ABC và DEC đồng dạng (gg) (1)

b BC^2=3^2+5^2=34

=> BC= căn (34)

BD/DC=3/5

BC/DC=8/5

<=> căn 34/DC=8/5

=> DC=căn(34) *5/8

=> BD=căn(34) -DC=3(căn(34))/8

c Sabc=3*5/2=15/2

sabde= 15/2-15/2*17/32=225/64

a: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=30\cdot20=600\left(cm^2\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=24\left(cm\right)\)

\(BH=\sqrt{30^2-24^2}=18\left(cm\right)\)

CH=32(cm)

\(S_{ABH}=\dfrac{24\cdot18}{2}=24\cdot9=216\left(cm^2\right)\)

\(S_{ACH}=\dfrac{24\cdot32}{2}=12\cdot32=384\left(cm^2\right)\)

b: \(AD=\dfrac{AH^2}{AB}=\dfrac{24^2}{30}=19.2\left(cm\right)\)

\(HD=\dfrac{AH\cdot HB}{AB}=\dfrac{24\cdot18}{30}=14.4\left(cm\right)\)

\(S_{AEHD}=HD\cdot AD=19.2\cdot14.4=276.48\left(cm^2\right)\)