a.tam giác ABC có độ dài cạnh tỉ lệ với 4,5,7 . Tính độ dài cạnh của tam giác biết chu vi của tam giác lớn hơn 2 lần cạnh nhỏ nhất là 2 cm
b. Tính độ dài các cạnh của 1 tam giác biết chu vi là 33cm và các cạnh của tam giác tỉ lệ với các số 2,4,5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\) Gọi độ dài 3 cạnh là a,b,c(cm;0<a<b<c<120)
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{120}{12}=10\\ \Rightarrow \begin{cases} a=10.3=30\\ b=10.4=40\\ c=10.5=50 \end{cases} \)
Vậy ...
\(b,\) Gọi độ dài 3 cạnh là a,b,c(cm;0<a<b<c)
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{c-a}{7-3}=\dfrac{80}{4}=20\\ \Rightarrow \begin{cases} a=20.3=60\\ b=20.5=100\\ c=20.7=140 \end{cases}\\ \Rightarrow P=a+b+c=300(cm)\)
a) \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b+c}{3+5+7}=\frac{45}{15}=3\)
a=9, b=15, c=21
b) \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{c-a}{7-3}=\frac{20}{4}=5\)
a= 15; b=25; c= 35
Lời giải:
Gọi độ dài các cạnh của tam giác là $a,b,c$ lần lượt tỉ lệ với $4,5,7$. Khi đó, a là cạnh nhỏ nhất.
Theo bài ra ta có:
$\frac{a}{4}=\frac{b}{5}=\frac{c}{7}$
$a+b+c-2a=b+c-a=24$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{a}{4}=\frac{b}{5}=\frac{c}{7}=\frac{b+c-a}{5+7-4}=\frac{24}{8}=3$
$\Rightarrow a=4.3=12$ (cm); $b=3.5=15$ (cm); $c=3.7=21$ (cm)
Gọi 3 cạnh của tam giác lần lượt là : a ; b ; c
Ta có : \(\frac{a}{2}=\frac{b}{4}=\frac{c}{5}\)và a + b + c = 33
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{2+4+5}=\frac{33}{11}=3\)
=> a = 3 . 2 = 6
b = 3 . 4 = 12
c = 3 . 5 = 15
Vậy ...
a: Gọi độ dài ba cạnh lần lượt là a,b,c
Theo đề, ta có: a/4=b/5=c/7 và a+b+c-2a=2
Áp dụng tính chất của DTBSN, ta được:
\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b+c-2a}{4+5+7-2\cdot4}=\dfrac{2}{8}=\dfrac{1}{4}\)
=>a=1; b=5/4; c=7/4
b: Gọi độ dài ba cạnh lần lượt là a,b,c
Theo đề, ta có:
a/2=b/4=c/5
Áp dụng tính chất của DTSBN, ta đc:
\(\dfrac{a}{2}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{2+4+5}=\dfrac{33}{11}=3\)
=>a=6; b=12; c=15