Cho tam giác ABC vuông tại A M, N lần lượt là trung điểm của AB, AC. Gọi E là điểm đối xứng của M qua N.
a. Chứng minh tứ giác AECM là hình bình hành.
b.tứ giác ACEM là hình j vì sao
c. Tam giác ABC cần thêm điều kiện gì để tứ giác AECM là hình vuôn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC
a/ MN là ĐTB của tam giác ABC
=> MN//AB
=> NMC=ABC=90-30=60 độ
b/ N là trung điểm 2 đường chéo AC và ME của tg AECM
=> AECM là hình bình hành.
c/ c/ gọi O là giao của MC và DE khi đó tam giác EMD có ON là ĐTB nên ON//DM và tam giác AMC có ON là ĐTB nên ON // AM
=> A, M, D thẳng hàng
=> M là trung điểm AD mặt khác có M là trung điểm BC
=> ABCD là hình bình hành mà góc A bằng 90 độ nên là hình chữ nhật
a) Xét tứ giác AMBE có
D là trung điểm của đường chéo AB(gt)
D là trung điểm của đường chéo ME(M và E đối xứng nhau qua D)Do đó: AMBE là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Ta có: AMBE là hình bình hành(cmt)
nên AM//BE và AM=BE(Hai cạnh đối của hình bình hành AMBE)
mà \(C\in EB\) và EB=EC(E là trung điểm của BC)
nên AM//CE và AM=CE
Xét tứ giác AMEC có
AM//CE(cmt)
AM=CE(cmt)
Do đó: AMEC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b) Ta có: ΔABC cân tại A(gt)
mà AE là đường trung tuyến ứng với cạnh đáy BC(E là trung điểm của BC)
nên AE là đường cao ứng với cạnh BC(Định lí tam giác cân)
⇔AE⊥BC
hay \(\widehat{AEB}=90^0\)
Xét hình bình hành AMBE có \(\widehat{AEB}=90^0\)(cmt)
nên AMBE là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
c) Ta có: E là trung điểm của BC(gt)
nên \(BE=\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)
Ta có: ΔABE vuông tại E(\(\widehat{AEB}=90^0\))
nên \(S_{ABE}=\dfrac{AE\cdot EB}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)
a: Xét tứ giác AECM có
N là trung điểm chung của AC và EM
nên AECM là hình bình hành
c: Để AECM là hình vuông thì góc CAM=45 độ và CM=MA
=>ΔBAC vuông cân tại C