Số lượng trục đối xứng, tâm dối xứng:
+) Hình thang
+) Hình thang cân
+) Hình thang vuông
+) Hình vuông
+) Hình chữ nhật
+) Hình thoi
+) Hình bình hành
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tứ giác BICG có :
M là trung điểm cuả BC do AM là trung tuyến (gt)
M là trung điểm của GI do I đx G qua M (gt)
=> BICG là hình bình hành (dh)
+ G là trọng tâm của tam giác ABC (gt)
=> GM = AG/2 và GN = BG/2 (đl)
E; F lần lượt là trung điểm của GB; GA (gt) => FG = AG/2 và GE = BG/2 (tc)
=> FG = GM và GN = GE
=> G là trung điểm của FM và EN
=> MNFE là hình bình hành (dh)
b, MNFE là hình bình hành (câu a)
để MNFE là hình chữ nhật
<=> NE = FM
có : NE = 2/3BN và FM = 2/3AM
<=> AM = BN mà AM và BN là trung tuyến của tam giác ABC (Gt)
<=> tam giác ABC cân tại C (đl)
c, khi BICG là hình thoi
=> BG = CG
BG và AG là trung tuyến => CG là trung tuyến
=> tam giác ABC cân tại A
a)ta có I là trung điểm của AC ( gt)
I là trung điểm của MK(K dối xứng với M qua I)
=>AMCK là hình bình hành
xét tam giác ABC cân tại A có
AM là trung tuyến của tam giác ABC
=>AM cũng là đường cao của tam giác ABC
=>góc AMC =900
mà AMCK là hình bình hành =>AMCK là hình chữ nhật
b)ta có :KA=CM(AMCK là hình chữ nhật)
mà CM=MB nên KA=MB
Xét tam giác AMK vuông tại A và tam giác MAB vuông tại M
AM : cạnh chung
KA=MB(chứng minh trên)
Suy ra tam giác AMK=tam giác MAB(cgv-cgv)
=>góc AMK=góc BAM (2 góc tương ứng )
Mà hai góc này ở vị trí so le trong nên:
AB song song MK
ta lại có AB=KM(tam giác AMK=tam giác MAB)
=>AKMB là hình bình hành
c)ta có AMCK là hình vuông
=>AM=CM
mà CM=BM(AM là trung tuyến của tam giác ABC)
nên AM=\(\frac{CM+BM}{2}+\frac{BC}{2}\)
=>tam giác ABC vuông cân tại A
Vậy tam giác ABC cần có thêm điều kiện là cân tại A thì AMCK là hình vuông
a: Xét ΔABC có
E là trung điểm của BC
F là trung điểm của AC
Do đó: EF là đường trung bình của ΔABC
Suy ra: EF//AD và EF=AD
Xét tứ giác ADEF có
EF//AD
EF=AD
Do đó: ADEF là hình bình hành
mà \(\widehat{FAD}=90^0\)
nên ADEF là hình chữ nhật
mà AD=AF
nên ADEF là hình vuông
HCN:chiều dài x chiều rộng
hình vuông:cạnh x cạnh
hình tròn:bán kính x bán kính x 3,14
tam giác:chiều cao x đáy
hình thag:ko nhớ
hbh
hình thoi:2 đường chéo
hk tốt..
Hình chữ nhật có 1 tâm đối xứng có 2 trục đối xứng.
Hình vuông có 1 tâm đối xứng có 4 trục đối xứng.
Hình bình hành có 1 tâm đối xứng có 0 trục đối xứng.
Hình thang cân có 0 tâm đối xứng có 1 trục đối xứng
Hình thoi có hai trục đối xứng có 1 tâm đối xứng
thiếu hai cái í thông cảm