Tính tổng:\(M:-\frac{4}{1.5}-\frac{4}{5.9}-\frac{4}{9.13}-...-\frac{4}{\left(n+4\right)n}.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M = - ( 4/1.5 + 4/5.9 + ..................+ 4/(n-4).n
M = - (1-1/5 + 1/5 - 1/9 +..............+1/(n-4) - 1/n
M = -(1-1/n)
M = -1 + 1/n
M = -n + 1
M=\(\frac{4}{1.5}-\frac{4}{5.9}-\frac{4}{9.13}-...-\frac{4}{\left(n-4\right).n}\)
\(M=1-\frac{1}{5}-\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+...+\frac{1}{n-4}-\frac{1}{n}\right)\)
\(M=1-\frac{1}{5}-\frac{1}{5}+\frac{1}{n}\)
\(M=\frac{3}{5}+\frac{1}{n}\)
Mình chỉ giải đến đây thôi vì chẳng biết n bằng mấy cả
= - (1-1/5 +1/5 -1/9 +1/9 -1/13 +1/n + 1/n+4)
=-(1-1/n+4)
=-1+1/n+4
\(S=\frac{-4}{1.5}-\frac{4}{5.9}-\frac{4}{9.13}-...-\frac{4}{\left(n-4\right).n}\)
\(=-\left(\frac{1}{1}-\frac{1}{5}\right)-\left(\frac{1}{5}-\frac{1}{9}\right)-\left(\frac{1}{9}-\frac{1}{13}\right)-...-\left(\frac{1}{n-4}-\frac{1}{n}\right)\)
\(=-\frac{1}{1}+\frac{1}{5}-\frac{1}{5}+\frac{1}{9}-\frac{1}{9}+\frac{1}{13}-...-\frac{1}{n-4}+\frac{1}{n}\)
\(=-\frac{1}{1}+\frac{1}{n}=\frac{1}{n}+1\)
Ta có :
\(M=-\frac{4}{1.5}-\frac{4}{5.9}-\frac{4}{9.13}-...-\frac{4}{\left(n+4\right)n}\)
\(\Leftrightarrow\)\(M=-\left(\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{n+4}-\frac{1}{n}\right)\)
\(\Leftrightarrow\)\(M=-\left(1-\frac{1}{n}\right)\)
\(\Leftrightarrow\)\(M=-\frac{n}{n}+\frac{1}{n}\)
\(\Leftrightarrow\)\(M=\frac{-n+1}{n}\)
Vậy \(M=\frac{-n+1}{n}\)
\(\text{Đề bài sai : }\frac{4}{\left(n-4\right)^n}->\frac{4}{\left(n-4\right)^n}\)
\(\text{Ta có :}\)
\(S=\frac{4}{1.5}-\frac{4}{5.9}-\frac{4}{9.13}-...-\frac{4}{\left(n-4\right)n}\)
\(=\left(\frac{1}{1}-\frac{1}{5}\right)-\left(\frac{1}{5}-\frac{1}{9}\right)-...-\left(\frac{1}{n-4}-\frac{1}{n}\right)\)
\(=\frac{1}{1}-\frac{1}{5}-\frac{1}{5}+\frac{1}{9}-...-\frac{1}{n-4}+\frac{1}{n}\)
\(=\frac{1}{1}-\frac{1}{5}-\frac{1}{5}+\frac{1}{n}\)
\(=\frac{3}{5}+\frac{1}{n}\)
\(=\frac{3}{5}+\frac{1}{n}\)
\(=\frac{3n+5}{5n}\)
\(\text{Vậy ...}\)
M = - \(\frac{4}{1.5}\) - \(\frac{4}{5.9}\) - ... - \(\frac{4}{n\left(n+4\right)}\)
= - (\(\frac{4}{1.5}\) + \(\frac{4}{5.9}\) + ... + \(\frac{4}{n\left(n+4\right)}\)
= - ( 1 - \(\frac{1}{5}\) + \(\frac{1}{5}\) - \(\frac{1}{9}\) + ... + \(\)\(\frac{1}{n}\) - \(\frac{1}{n+4}\)
= - ( 1 - \(\frac{1}{n+4}\))
= - \(\frac{n+3}{n+4}\)
1 Tính :
a) \(A=\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-...-\frac{1}{\left(n-1\right).n}\)
\(=\frac{1}{1.2}-\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\right)\)
\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)
\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{n}\right)\)
\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{n}\)
\(=\frac{1}{n}\)
b) \(B=\frac{4}{1.5}-\frac{4}{5.9}-\frac{4}{9.13}-...-\frac{4}{\left(n-4\right).n}\)
\(=\frac{4}{1.5}-\left(\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{\left(n-4\right).n}\right)\)
\(=\frac{4}{5}-\left(\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{\left(n-4\right).n}\right)\)
\(=\frac{4}{5}-\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{n-4}-\frac{1}{n}\right)\)
\(=\frac{4}{5}-\left(\frac{1}{5}-\frac{1}{n}\right)\)
\(=\frac{4}{5}-\frac{1}{5}+\frac{1}{n}\)
\(=\frac{3}{5}+\frac{1}{n}\)
c) \(C=1-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{10}}\)
\(=1-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
Đặt \(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)
\(\Rightarrow C=1-B\left(1\right)\)
\(\Rightarrow2B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
Lấy 2B trừ B ta có :
\(2B-B=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
\(B=1-\frac{1}{2^{10}}\left(2\right)\)
Thay (2) vào (1) ta có :
\(C=1-\left(1-\frac{1}{10}\right)\)
\(=1-1+\frac{1}{10}\)
\(=\frac{1}{10}\)
Vậy \(C=\frac{1}{10}\)
\(S=\frac{5-1}{1.5}+\frac{9-5}{5.9}+\frac{13-9}{9.13}+..+\frac{2005-2001}{2001.2005}\)
\(=\left(1-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{9}\right)+\left(\frac{1}{9}-\frac{1}{13}\right)+...+\left(\frac{1}{2001}-\frac{1}{2005}\right)\)
\(=1+\left(-\frac{1}{5}+\frac{1}{5}\right)+\left(-\frac{1}{9}+\frac{1}{9}\right)+...+\left(-\frac{1}{2001}+\frac{1}{2001}\right)-\frac{1}{2005}\)
\(=1-\frac{1}{2005}\)
\(=\frac{2004}{2005}\)
Ta có : \(-\frac{4}{1.5}-\frac{4}{5.9}-\frac{4}{9.13}-.....-\frac{4}{\left(n+4\right)n}\)
\(=-\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+......+\frac{4}{n\left(4+n\right)}\right)\)
\(=-\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+......+\frac{1}{n}-\frac{1}{n+4}\right)\)
\(=-\left(1-\frac{1}{n+4}\right)\)
\(=-\left(\frac{n+4}{n+4}-\frac{1}{n+4}\right)\)
\(=-\frac{n+3}{n+4}\)