Cho phân số :
A = 2012 / 2013 + 2013 / 2014 + 2014 / 2015 + 2015 / 2012 . CMR : A > 4
Trình bày cụ thể hộ mình nha !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}$
phân số dài này sẽ bằng 1
Đ/s : = 1
phân số lơn luôn là số tự nhiên
nhé !
\(\frac{\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}}{\frac{5}{2012}+\frac{5}{2013}-\frac{5}{2014}}-\frac{\frac{2}{2013}+\frac{2}{2014}-\frac{2}{2015}}{\frac{3}{2013}+\frac{3}{2014}-\frac{3}{2015}}\)
=\(\frac{\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}}{5\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}\right)}-\frac{2\left(\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}\right)}{3\left(\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}\right)}=\frac{1}{5}-\frac{2}{3}=\frac{3}{15}-\frac{10}{15}=-\frac{7}{15}\)
\(N=\frac{2012+2013+2014}{2013+2014+2015}=\frac{2012}{2013+2014+2015}+\frac{2013}{2013+2014+2015}+\frac{2014}{2013+2014+2015}\)
Ta thấy: \(\frac{2012}{2013}>\frac{2012}{2013+2014+2015}\)
\(\frac{2013}{2014}>\frac{2013}{2013+2014+2015}\)
\(\frac{2014}{2015}>\frac{2014}{2013+2014+2015}\)
\(\Rightarrow M=\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}>N=\frac{2012}{2013+2014+2015}+\frac{2013}{2013+2014+2015}+\frac{2014}{2013+2014+2015}\)
Vậy M>N
A= 4,00000148 nên A>4
A = 2013/2013 - 1/2013 + 2014/2014 -1/2014 + 2015/2015 - 1/2015 + 2012/2012 + 3/2012
A = 1 - 1/2013 + 1 - 1/2014 + 1 - 1/2015 + 1 = 1/2012 + 1/2012 + 1/2012
A = 4 + ( 1/2012 - 1/2013) + (1/2012 - 1/2014) + (1/2012 - 1/ 2015)
Vì:
1/2012 > 1/2013 => 1/2012 - 1/2013>0
1/2012 > 1/2014 => 1/2012 - 1/2014>0
1/2012 > 1/2015 => 1/2012 - 1/2015>0
=>( 1/2012 - 1/2013) + (1/2012 - 1/2014) + (1/2012 - 1/ 2015) >0.
=>4 + ( 1/2012 - 1/2013) + (1/2012 - 1/2014) + (1/2012 - 1/ 2015) > )+ 4 = 4.