K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2017

                  \(a+b+c=3\)

              So \(\frac{1}{a2}\)

9 tháng 6 2018

We have:\(\hept{\begin{cases}a^2+b^2+c^2=\frac{1}{3}\\a,b,c>0\end{cases}\Rightarrow0< a,b,c< \frac{1}{\sqrt{3}}}\)

We prove to:

\(4x+\frac{2}{3x}\ge-3x^2+\frac{11}{3}\)  with  \(0< x< \frac{1}{\sqrt{3}}\)

\(\Leftrightarrow4x+\frac{2}{3x}+3x^2-\frac{11}{3}\ge0\)

\(\Leftrightarrow9x^3+12x^2-11x+2\ge0\)

\(\Leftrightarrow\left(3x+1\right)^2\left(x+2\right)\ge0\)   Always true to all \(0< x< \frac{1}{\sqrt{3}}\) 

\(\Rightarrow VT\ge-3a^2+\frac{11}{3}-3b^2+\frac{11}{3}-3c^2+\frac{11}{3}\)

\(=-3\left(a^2+b^2+c^2\right)+11=-3.\frac{1}{3}+11=10\) \(\left(đpcm\right)\)

9 tháng 6 2018

Đặt biểu thức trên là \(A\)

Ta có : \(A=\left(4a+\frac{2}{3a}\right)+\left(4b+\frac{2}{3b}\right)+\left(4c+\frac{2}{3c}\right)\)

Cần chứng minh \(4a+\frac{2}{3a}\ge-3a^2+\frac{11}{3}\) (*)

Thật vậy \(BĐT\Leftrightarrow4a+\frac{2}{3a}+3a^2-\frac{11}{3}\ge0\)

\(\Leftrightarrow\frac{12a^2+2+9a^3-11a}{3a}\ge0\Leftrightarrow\frac{\left(a+2\right)\left(3a-1\right)^2}{3a}\ge0\) (luôn đúng)

Tương tự : \(4b+\frac{2}{3b}\ge-3b^2+\frac{11}{3}\)   và \(4c+\frac{2}{3c}\ge-3c^2+\frac{11}{3}\)

Cộng các bất dẳng thức vừa CM đc ta có :

\(A\ge-3\left(a^2+b^2+c^2\right)+\frac{11}{3}.3=-3.\frac{1}{3}+11=10\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)

10 tháng 6 2019

Có: \(\frac{1}{ab}+\frac{1}{cd}\ge\frac{4}{ab+cd}=\frac{8}{a^2+b^2+c^2+d^2}.\)

Cần CM: \(\frac{8}{a^2+b^2+c^2+d^2}\ge\frac{a^2+b^2+c^2+d^2}{2}\)

hay: \(\left(a^2+b^2+c^2+d^2\right)^2\ge16\)

\(\Leftrightarrow a^2+b^2+c^2+d^2\ge4\)

CM Bđt phụ sau: \(a^2+b^2+c^2+d^2\ge\frac{\left(a+b+c+d\right)^2}{4}\)

Thật vậy: \(4\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(c-d\right)^2+\left(a-c\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2\ge0\)(đúng)

.................

11 tháng 6 2019

Lê Nhật Khôi cách này lúc đầu em cũng tính làm như nó ngược dấu rồi thì phải:

\(\frac{8}{a^2+b^2+c^2+d^2}\ge\frac{a^2+b^2+c^2+d^2}{2}\)

\(\Leftrightarrow\frac{16}{2\left(a^2+b^2+c^2+d^2\right)}\ge\frac{\left(a^2+b^2+c^2+d^2\right)^2}{2\left(a^2+b^2+c^2+d^2\right)}\)

\(\Leftrightarrow\left(a^2+b^2+c^2+d^2\right)^2\le16\) thế này mới đúng chứ?

_ tth_

19 tháng 12 2016

Mọi người giải ra giúp ạ, cảm ơn nhiều!

9 tháng 4 2021

Đặt \(\left(a;b;c\right)=\left(\frac{x}{y}k;\frac{y}{z}k;\frac{z}{x}k\right)\) \(k\inℝ^+\)

Bất đẳng thức cần chứng minh tương đương:

\(\frac{1}{\frac{x}{y}k\left(\frac{y}{z}k+1\right)}+\frac{1}{\frac{y}{z}k\left(\frac{z}{x}k+1\right)}+\frac{1}{\frac{z}{x}k\left(\frac{x}{y}k+1\right)}\ge\frac{3}{\sqrt[3]{\frac{x}{y}k\cdot\frac{y}{z}k\cdot\frac{z}{x}k}\left(1+\sqrt[3]{\frac{x}{y}k\cdot\frac{y}{z}k\cdot\frac{z}{x}k}\right)}\)

\(\Leftrightarrow\frac{yz}{xk\left(yk+z\right)}+\frac{zx}{yk\left(zk+x\right)}+\frac{xy}{zk\left(xk+y\right)}\ge\frac{3}{k\left(1+k\right)}\) (D)

Ta có: \(\frac{yz}{xk\left(yk+z\right)}+\frac{zx}{yk\left(zk+x\right)}+\frac{xy}{zk\left(xk+y\right)}\)

\(=\frac{\left(yz\right)^2}{xyzk\left(yk+z\right)}+\frac{\left(zx\right)^2}{xyzk\left(zk+x\right)}+\frac{\left(xy\right)^2}{xyzk\left(xk+y\right)}\)

\(\ge\frac{\left(xy+yz+zx\right)^2}{xyzk\left(xk+yk+zk+x+y+z\right)}\) (Bất đẳng thức Bunyakovsky dạng phân thức)

\(\ge\frac{3\left(xyz^2+xy^2z+x^2yz\right)}{xyzk\left(x+y+z\right)\left(k+1\right)}=\frac{3xyz\left(x+y+z\right)}{xyzk\left(x+y+z\right)\left(k+1\right)}=\frac{3}{k\left(k+1\right)}\)

=> BĐT (D) đúng => đpcm

Dấu "=" xảy ra khi: \(a=b=c\)

27 tháng 5 2018

Ta có: 2015/501=4+11/501 =>a=4

        501/11=45+6/11  =>b=45

         11/6=3+2/3  =>c=3

       3/2=1+1/2    =>d=1

       2/1=2  =>e=2

Vậy a=4 :b=45 :c=3 :d=1: e=2

Chúc bạn học tốt . Để dễ hiểu bạn hãy tham hảo đề toán giải máytính cầm tay

20 tháng 12 2016

Ta có:

\(\hept{\begin{cases}ab=q\\a+b=p\end{cases}}\)và \(\hept{\begin{cases}cd=s\\c+d=r\end{cases}}\)

\(M=\frac{2\left(abc+bcd+cda+dab\right)}{p^2+q^2+r^2+s^2}=\frac{2\left(qc+sb+sa+qd\right)}{p^2+q^2+r^2+s^2}\)

\(=\frac{2\left(qr+sp\right)}{p^2+q^2+r^2+s^2}\le\frac{2\left(qr+sp\right)}{2\left(qr+sp\right)}=1\)

Với M = 1 thì \(\hept{\begin{cases}q=r\\p=s\end{cases}}\)

Tới đây thì không biết đi sao nữa :D

20 tháng 12 2016

thôi bỏ bài này đi cũng được vì chưa tới lúc cần dung phương trình