K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=>2x(x^2-11x+18)=0

=>x(x-2)(x-9)=0

=>\(x\in\left\{0;2;9\right\}\)

28 tháng 10 2021

\(a,\Leftrightarrow\left(x+3\right)\left(x+3-2x-1\right)=0\\ \Leftrightarrow\left(x+3\right)\left(2-x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\\ b,\Leftrightarrow x\left(x^2-12x+36\right)=0\\ \Leftrightarrow x\left(x-6\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

28 tháng 10 2021

a, (x+3)2 - ( 2x + 1 ).( x+3)=0              b,     x3-12x2+36x =0

=> (x+3).(x+3-2x-1)                             => x(x2-12x+36) = 0

=>(x+3).(-x+2)                                     => x(x-6)2 = 0

=> x+3=0  <=> x=-3                            => x=0        <=> x=0

     -x+2=0 <=> x=-2                                 x-6= 0    <=> x=6

24 tháng 6 2021

a) pt <=> - cos2x. tan22x + 3.cos2x=0

      <=>  \(\dfrac{sin^22x}{-cos2x}\)+ 3cos2x =0

      <=>  sin22x - 3cos22x = 0

     <=> 1 - 4 cos22x = 0

      <=> 1 - 4.\(\dfrac{1+cos4x}{2}\)= 0

      <=>  cos4x = \(\dfrac{-1}{2}\)

24 tháng 6 2021

Chứng minh VT=VP cơ ạ

31 tháng 10 2020

a) x2 - 25x = 0

=> x(x - 25) = 0

=> \(\orbr{\begin{cases}x=0\\x=25\end{cases}}\)

b) (x - 3)2 - 36x2 = 0

=> (x - 3)2 - (6x)2 = 0

=> \(\left(x+6x-3\right)\left(x-6x-3\right)=0\)

=> \(\orbr{\begin{cases}7x-3=0\\-5x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{3}{7}\\x=-\frac{3}{5}\end{cases}}\)

c) 2x(3 - x) + 2x2 = 12

=> 6x - 2x2 + 2x2 = 12

=> 6x = 12

=> x = 2

d) x(x - 2) - x + 2 = 0

=> x(x - 2) - (x - 2) = 0

=> (x - 1)(x - 2) = 0

=> \(\orbr{\begin{cases}x=1\\x=2\end{cases}}\)

31 tháng 10 2020

a. x - 25x = 0

\(\Leftrightarrow x\left(x-25\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-25=0\end{cases}}\)

\(\orbr{\begin{cases}x=0\\x=25\end{cases}}\)

Vậy ...

b.(x-3)2 - 36x= 0

\(\Leftrightarrow\left(x-3-6x\right)\left(x-3+6x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}-5x-3=0\\7x-3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-3}{5}\\x=\frac{3}{7}\end{cases}}\)

Vậy...

c.2x(3-x)+2x2 = 12 

<=> 6x - 2x2 + 2x= 12

<=> 6x = 12

<=> x = 2

d. x (x-2) - x + 2 =0

<=> x(x-2 ) - (x - 2 ) = 0

<=> ( x - 2 ) ( x - 1 ) = 0

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}\)

Vậy...

NV
21 tháng 8 2020

\(\Leftrightarrow sin^22x-cos^22x-3sin2x-4=0\)

\(\Leftrightarrow sin^22x-\left(1-sin^22x\right)-3sin2x-4=0\)

\(\Leftrightarrow2sin^22x-3sin2x-5=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=-1\\sin2x=\frac{5}{3}>1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow2x=-\frac{\pi}{2}+k2\pi\)

\(\Rightarrow x=-\frac{\pi}{4}+k\pi\)

16 tháng 12 2022

1: =>(x+3)(x-5)=0

=>x=5 hoặc x=-3

2: =>(x-1)(5x-1)=0

=>x=1/5 hoặc x=1

5: =>(x-4)*x=0

=>x=0 hoặc x=4

10: =>(x+5)(x-3)=0

=>x=3 hoặc x=-5

9: =>(x-2)(x-4)=0

=>x=2 hoặc x=4

7: =>(x-6)(2x-1)=0

=>x=1/2 hoặc x=6

8: =>(2x-1)(3x-12)=0

=>x=4 hoặc x=1/2

NV
8 tháng 8 2020

3.

ĐKXĐ: ...

\(\Leftrightarrow tan^22x+\left(\frac{1}{cos^22x}+1\right)=8\)

\(\Leftrightarrow tan^22x+tan^22x=8\)

\(\Leftrightarrow tan^22x=4\)

\(\Rightarrow\left[{}\begin{matrix}tan2x=2\\tan2x=-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=arctan\left(2\right)+k180^0\\2x=-arctan\left(2\right)+k180^0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{1}{2}arctan\left(2\right)+k90^0\\x=-\frac{1}{2}arctan\left(2\right)+k90^0\end{matrix}\right.\)

Nghiệm trên nhận các giá trị \(k=\left\{0;1;2;3\right\}\) ; nghiệm dưới nhận các giá trị \(k=\left\{1;2;3;4\right\}\)

NV
8 tháng 8 2020

1. ĐKXĐ: ...

\(\Leftrightarrow tan\left(x+\frac{\pi}{3}\right)=\frac{1}{tan\left(2x-\frac{\pi}{4}\right)}\)

\(\Leftrightarrow tan\left(x+\frac{\pi}{3}\right)=cot\left(2x-\frac{\pi}{4}\right)\)

\(\Leftrightarrow tan\left(x+\frac{\pi}{3}\right)=tan\left(\frac{3\pi}{4}-2x\right)\)

\(\Leftrightarrow x+\frac{\pi}{3}=\frac{3\pi}{4}-2x+k\pi\)

\(\Rightarrow x=\frac{5\pi}{36}+\frac{k\pi}{3}\)

2.

ĐKXĐ: ...

\(\Leftrightarrow tan\left(x+1\right)=\frac{1}{cot\left(2x+3\right)}\)

\(\Leftrightarrow tan\left(x+1\right)=tan\left(2x+3\right)\)

\(\Leftrightarrow2x+3=x+1+k\pi\)

\(\Rightarrow x=-2+k\pi\)

28 tháng 6 2021

1.Pt \(\Leftrightarrow cos\left(2x-\dfrac{\pi}{3}\right)=sin\left(x+\dfrac{\pi}{3}\right)\)

\(\Leftrightarrow cos\left(2x-\dfrac{\pi}{3}\right)=cos\left(\dfrac{\pi}{6}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{3}=\dfrac{\pi}{6}-x+k2\pi\\2x-\dfrac{\pi}{3}=x-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\\x=\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)

\(\Rightarrow x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\)\(\left(k\in Z\right)\)

2.\(sin^22x+cos^23x=1\)

\(\Leftrightarrow\dfrac{1-cos4x}{2}+\dfrac{1+cos6x}{2}=1\)

\(\Leftrightarrow cos6x=cos4x\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{k\pi}{5}\end{matrix}\right.\)\(\left(k\in Z\right)\)\(\Rightarrow x=\dfrac{k\pi}{5}\)\(\left(k\in Z\right)\) (Gộp nghiệm)

Vậy...

3. \(Pt\Leftrightarrow\left(sinx+sin3x\right)+\left(sin2x+sin4x\right)=0\)

\(\Leftrightarrow2.sin2x.cosx+2.sin3x.cosx=0\)

\(\Leftrightarrow2cosx\left(sin2x+sin3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sin3x=-sin2x\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\sin3x=sin\left(\pi+2x\right)\end{matrix}\right.\)(\(k\in Z\))

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\pi+k2\pi\\x=\dfrac{k2\pi}{5}\end{matrix}\right.\)(\(k\in Z\))\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\dfrac{k2\pi}{5}\end{matrix}\right.\) (\(k\in Z\))

Vậy...

4. Pt\(\Leftrightarrow\dfrac{1-cos2x}{2}+\dfrac{1-cos4x}{2}=\dfrac{1-cos6x}{2}\)

\(\Leftrightarrow cos2x+cos4x=1+cos6x\)

\(\Leftrightarrow2cos3x.cosx=2cos^23x\)

\(\Leftrightarrow\left[{}\begin{matrix}cos3x=0\\cosx=cos3x\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k\pi}{3}\\x=-k\pi\\x=\dfrac{k\pi}{2}\end{matrix}\right.\)\(\left(k\in Z\right)\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k\pi}{3}\\x=\dfrac{k\pi}{2}\end{matrix}\right.\)\(\left(k\in Z\right)\)

Vậy...