Tổng nghiệm của phương trình x4+2x2-3=0 bằng
A.-2 B.-1 C.0 D.-3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Ta có:
f ' x = 4 x 3 − 4 x > 0 ⇔ x − 1 x x + 1 > 0 ⇔ x > 1 − 1 < x < 0
Áp dụng hệ thức vi ét:
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=-m\\x_1.x_2=m-1\end{matrix}\right.\)
⇒ \(\left(x_1+x_2\right)^2-2x_1.x_2=m^2-2\left(m-1\right)\)
\(\Leftrightarrow x_1^2+x_2^2=\left(m-1\right)^2\)
\(Min\left(x_1^2+x_2^2=0\right)\Leftrightarrow m=1\)
Đặt t = x 2 ≥ 0
Phương trình (1) thành t 2 + 2 t + a = 0 1
Phương trình (1) có đúng 3 nghiệm phân biệt
=> phương trình (2) có một nghiệm bằng 0 và nghiệm còn lại dương.
(2) có nghiệm t = 0 ⇔ 0 2 + 2 . 0 + a = 0 ⇔ a = 0
Khi đó phương trình trở thành t 2 + 2 t = 0 ⇔ t = 0 t = − 2 < 0 nên không thỏa mãn yêu cầu bài toán.
Vậy không có giá trị nào của a thỏa mãn bài toán.
Đáp án cần chọn là: A
Thay \(x=-1\) vào ta được:
\(\left(-1\right)^2-\left(3m+1\right)\left(-1\right)+m-5=0\)
\(\Leftrightarrow4m-3=0\Rightarrow m=\dfrac{3}{4}\)
a. Đúng
Vì x 2 + 1 > 0 với mọi x nên phương trình đã cho tương đương với phương trình:
4x – 8 + (4 – 2x) = 0 ⇔ 2x – 4 = 0 ⇔ 2x = 4 ⇔ x = 2
b. Đúng
Vì x 2 – x + 1 = x - 1 / 2 2 + 3/4 > 0 với mọi x nên phương trình đã cho tương đương với phương trình:
(x + 2)(2x – 1) – x – 2 = 0 ⇔ (x + 2)(2x – 2) = 0
⇔ x + 2 = 0 hoặc 2x – 2 = 0 ⇔ x = - 2 hoặc x = 1
c. Sai
Vì điều kiện xác định của phương trình là x + 1 ≠ 0 ⇔ x ≠ - 1
Do vậy phương trình không thể có nghiệm x = - 1
d. Sai
Vì điều kiện xác định của phương trình là x ≠ 0
Do vậy x = 0 không phải là nghiệm của phương trình
\(a.\Leftrightarrow mx^2+2mx-x+m+2=0\)
\(\Leftrightarrow mx\left(x+2\right)+\left(m+2\right)-x=0\)
\(\Leftrightarrow\left(m+2\right)\left(mx+1\right)-x=0\)
\(\Rightarrow\left\{{}\begin{matrix}m=\left(0+x\right):\left(mx+1\right)-2\\m=[\left(0+x\right):\left(m+2\right)-1]:x\end{matrix}\right.\)
\(x^4+2x^2-3=0\Leftrightarrow x^4+3x^2-x^2-3=0\)
\(\Leftrightarrow x^2\left(x+3\right)-\left(x^2+3\right)=0\)
\(\Leftrightarrow\left(x^2+3\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=-3\left(vn\right)\\x^2=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
\(\Rightarrow-1+1=0\)