x-3/x+3 - x+3/x-3= 6x^2/9-6x^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(A=\left(x^4-3x^2+9\right)\left(x^2+3\right)+\left(3-x^2\right)^2\)
\(A=x^6-3x^4+9x^2+3x^4-9x^2+27+9-6x^2+x^4\)
\(A=x^6+x^4-6x^2+36\)
b, \(M=5\left(x+2y\right)^2-\left(3y+2x\right)^2+\left(4x-y\right)^2+3\left(x-2y\right)\left(x+2y\right)\)
\(M=5\left(x^2+4xy+4y^2\right)-\left(9y^2+12xy+4x^2\right)+\left(16x^2-8xy+y^2\right)+3\left(x^2-4y^2\right)\)
\(M=5x^2+20xy+20y^2-9y^2-12xy-4x^2+16x^2-8xy+y^2+3x^2-12y^2\)
\(M=20x^2\)
Các câu còn lại làm tương tự! Chúc bạn học tốt!!!
E=\(\left(6x+1\right)^2+\left(6x-1\right)^2-2\left(1+6x\right)\left(6x-1\right)\)
\(\Leftrightarrow\left(6x+1\right)^2-2\left(1+6x\right)\left(6x-1\right)+\left(6x-1\right)^2\)
\(\Leftrightarrow\left[\left(6x+1\right)-\left(6x-1\right)\right]^2\)
\(\Leftrightarrow\left(6x+1-6x+1\right)^2=2^2=4\)
1. (x - 1)^3 + 3.(x - 3)^2 - (x + 2).(x^2 - 2x + 4) = (x + 2)^3 - (x - 3).(x^2 + 9) - 6x^2 + 5
<=> x^3 - 3x^2 + 3x - 1 + 3(x^2 - 6x + 9) - (x^3 + 2^3)
= x^3 + 6x^2 + 12x + 8 - (x^3 - 3x^2 + 9x -27) - 6x^2 + 5
<=> x^3 - 3x^2 + 3x - 1 + 3x^2 - 18x + 27 - x^3 - 8
= x^3 + 6x^2 + 12x + 8 - x^3 + 3x^2 - 9x + 27 - 6x^2 + 5
<=> 3x - 18x -12x - 3x^2 + 9x = 27 + 5 + 8 + 8 + 1 - 27
<=> - 3x^2 - 18x - 22 = 0
<=> 3x^2 + 18x + 22 = 0
Nửa chu vi mảnh đất là:
120 : 2 = 60 (m)
Chiều dài hơn chiều rộng là:
5 + 5 = 10 (m)
Chiều rộng là:
( 60 - 10 ) : 2 = 25 (m)
Chiều dài là:
25 + 10 = 35 (m)
Diện tích là:
25 35 = 875 ( )
= (x2+1)3 - [(x2)3 + 13]=0
(x6+ 3.x4 +3.x2 +1) - (x6+1) =0
x6+3.x4+3.x2+1-x6-1=0
3.x4+3.x2=0
3.x2(x2+1)=0
\(\orbr{\begin{cases}3.x^2=0\\x^2+1=0\end{cases}}\orbr{ }\Rightarrow\orbr{\begin{cases}x=0\\x^2=-1\left(loai\right)\end{cases}}\)
vay x=0
câu d
\(D=\dfrac{\left(1-x^2\right)}{x}\left(\dfrac{x^2}{x+3}-1\right)+\dfrac{3x^2-14x+3}{x^2+3x}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{-3;0\right\}\\D=\dfrac{\left(1-x^2\right)\left(x^2-x-3\right)+3x^2-14x+3}{x\left(x+3\right)}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{-3;0\right\}\\D=\dfrac{x^2-x-3-x^4+x^3-3x^2+3x^2-14x+3}{x\left(x+3\right)}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{-3;0\right\}\\D=\dfrac{-x^4+x^3+x^2-15x}{x\left(x+3\right)}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{-3;0\right\}\\D=\dfrac{-x\left(x^3-x^2-x+15\right)}{x\left(x+3\right)}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{-3;0\right\}\\D=\dfrac{-\left(x^3-x^2-x+15\right)}{\left(x+3\right)}\end{matrix}\right.\)