1,
b, 1/2003 x (1-1/2004) x (1-1/2005) x (1-1/2006)
2,
Cho A= 2008+334x999999...998
Tổng số có 1234 chữ số 9. Chứng tỏ rằng A chia hết cho 9.
Chỉ cần 1 bài thôi cũng được.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A xp=x+x2+x^3+x^4+..................+x^2016
=>xp-p= x^2016-1 ban nhe
B ap dung dau hieu chia het cho 3 la tong chu so chia het cho 3
A = (2004 x 2004 x x 2004) x 2004 = C x 2004 (C có 2002 thừa số 2004).
C có tận cùng là 6 nhân với 2004 nên A có tận cùng là 4 (vì 6 x 4 = 24).
B = 2003 x 2003 x x 2003 (gồm 2004 thừa số) = (2003 x 2003 x
2003 x 2003) x x (2003 x 2003 x 2003 x 2003). Vì 2004 : 4 = 501
(nhòm) nên B có 501 nhóm, mỗi nhóm gồm 4 thừa số 2003. Tận cùng
của mỗi nhóm là 1 (vì 3 x 3 = 9 ; 9 x 3 = 27 ; 27 x 3 = 81). Vậy tận
cùng của A + B là 4 + 1 = 5. Do đó A + B chia hết cho 5.
bài 1:
A = (2004 x 2004 x x 2004) x 2004 = C x 2004 ( có 2002 thừa số 2004)
C có tận cùng là 6 nhân với 2004 nên A có tận cùng là 4 ( vì 6 x 4 = 24)
B = 2003 x 2003 x x 2003 (gồm 2004 thừa số) =( 2003 x 2003 x 2003 x 2003) x x (2003 x 2003 x 2003 x 2003 ). vì 2004 : 4 = 501 (nhóm) nên B có 501 nhóm, mỗi nhóm gồm 4 thừa số 2003. tận cùng của mỗi nhóm là 1 (vì 3 x 3 = 9 ; 9 x 3 = 27 ; 27 x 3 = 81). vậy tận cùng của A + B là 4 + 1 = 5. do đó A + B chia hết cho 5
\(A=\left(1+\frac{1}{2003}\right).\left(1-\frac{1}{2004}\right).\left(1+\frac{1}{2005}\right).\left(1-\frac{1}{2006}\right).\left(1+\frac{1}{2007}\right).\left(1-\frac{1}{2008}\right)\)
\(=\frac{2004}{2003}.\frac{2003}{2004}.\frac{2006}{2005}.\frac{2005}{2006}.\frac{2008}{2007}.\frac{2007}{2008}\)
\(=1\)
\(2005^3-1=\left(2005-1\right)\left(2005^2+2005+1\right)=2004\times\left(2005^2+2005+1\right)⋮2004\left(\text{đ}pcm\right)\)
\(2005^3+125=\left(2005+5\right)\left(2005^2-2005\times5+5^2\right)=2010\times\left(2005^2-2005\times5+5^2\right)⋮2010\)
\(x^6+1=\left(x^2+1\right)\left(x^4-x^2+1\right)⋮x^2+1\left(\text{đ}pcm\right)\)
\(x^6-y^6=\left(x^2-y^2\right)\left(x^4+x^2y^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^4+x^2y^2+y^4\right)⋮x-y;x+y\left(\text{đ}pcm\right)\)
Thấy số chính phương là các số có dạng 3k hoặc 3k+1
A=1015+1=1000.....000000000001
Tổng các chữ số của A là 1+0+0+...+0+1=2
2 có dạng 3k+2
=> A có dạng 3k+2 nên A ko phải số chính phương
B chia hết cho B thì chắc chia hết cho 3
C thì
2) x2 + y2 = 3z2 => x2 + y2 chia hết cho 3
Vì x2 ; y2 là số chính phương nên x2 ; y2 chia cho 3 dư 0 hoặc 1
Nếu x2 hoặc y2 hoặc x2 và y2 chia cho 3 dư 1 => x2 + y2 chia cho 3 dư 1 hoặc 2 ( trái với đề bai)
=> x2 ; y2 đều chia hết cho 3. 3 là số nguyên tố => x; y đều chia hết cho 3
=> x2; y2 chia hết cho 9 => 3z2 chia hết cho 9 => z2 chia hết cho 3 ; 3 là số nguyên tố => z chia hết cho 3
Vậy...
1)
\(\frac{1}{2003}\times\left(1-\frac{1}{2004}\right)\times\left(1-\frac{1}{2005}\right)\times\left(1-\frac{1}{2006}\right)\)
\(=\frac{1}{2003}\times\frac{2003}{2004}\times\frac{2004}{2005}\times\frac{2005}{2006}\)
\(=\frac{1\times2003\times2004\times2005}{2003\times2004\times2005\times2006}\)
\(=\frac{1}{2006}\)
Ta có:\(\frac{1}{2003}\times\left(1-\frac{1}{2004}\right)\times\left(1-\frac{1}{2005}\right)\left(1-\frac{1}{2006}\right)\)
\(=\frac{1}{2003}.\frac{2003}{2004}.\frac{2004}{2005}.\frac{2005}{2006}\)
\(=\frac{1}{2006}\)