K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2017

Dòng thứ 3 không hiểu M,N ở đâu mà có?

28 tháng 2 2017

24 cm đó cậu

Gấp đôi BC (do MA=NA=BC; M,N,A thẳng hàng)

28 tháng 2 2017

mình phải off nên mình chỉ nói zậy thôi, sorry nha

8 tháng 11 2018

a, \(\Delta ABC\)có: 

 \(AB^2+AC^2=5^2+12^2=169=13^2=BC^2\)

\(\Rightarrow\Delta ABC\)vuông tại A có AM là đường trung tuyến AM ứng với cạnh huyền BC 

\(\Rightarrow AM=\frac{1}{2}BC=\frac{1}{2}.13=6,5\left(cm\right)\)

b, \(\Delta ABC\)có MD là đường trung bình \(\Rightarrow MD//AB\Rightarrow MD\perp AC\left(AB\perp AC\right)\Rightarrow\widehat{ADM}=90^0\)

Tương tự \(\widehat{AEM}=90^0\)

\(\widehat{BAC}=90^0\Rightarrow\widehat{DAE}=90^0\)

Tứ giác AEMD có \(\widehat{DAE}=\widehat{ADM}=\widehat{AEM}=90^0\)

Do đó: AEMD là hình chữ nhật.

8 tháng 11 2018

A B C E D 5 12 M 13

a) Ta có : AB2 + AC2 = 52 + 122 = 169 = 132 = BC2

=> tam giác ABC vuông tại A ( định lý Pytago đảo )

=> AM là đường trung tuyến ứng với cạnh huyền BC

=> BM = MC = AM = 13/2 = 6,5 ( cm )

Vậy AM = 6,5 cm

b) Xét tam giác ABM có BM = AM ( chứng minh trên )

=> tam giác ABM cân tại M

Xét tam giác ABM cân tại M có DM là đường trung tuyến

=> DM đồng thời là đường cao 

=> DM ⊥ AB

=> góc ADM = 900

Chứng minh tương tự ta có ME là đường cao trong tam giác cân AMN

=> góc MEA = 900

Xét tứ giác AEMD có góc ADM = góc DAE = góc MEA = 900

=> tứ giác AEMD là hình chữ nhật 

a: AB<AC<BC

=>góc C<góc B<góc A

b: Xét ΔABC vuông tại A và ΔADC vuông tại A có

AB=AD

AC chung

=>ΔABC=ΔADC

=>CB=CD
=>ΔCBD cân tại C

 

a: BC^2=AB^2+AC^2

=>ΔABC vuông tại A

b: CD=căn AC^2+AD^2=13cm