K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giải:

(1-1/22).(1-1/32).(1-1/42).....(1-1/102)

=3/2.2 . 8/3.3 . 15/4.4 . ... . 99/10.10

=1.3.2.4.3.5.....9.11/2.2.3.3.4.4.....10.10

=1.2.3.....9/2.3.4.....10 . 3.4.5....11/2.3.4.....10

=1/10.11/2

=11/20

Chúc bạn học tốt!

A bn lướt xuống dưới mà xem cách làm 

nhưng của bn là cho 3 ra ngoài nhahehe

1 tháng 5 2021

ukm thank chúc bn một ngày nghỉ vui vẻ nha

 

5 tháng 6 2023

\(a,P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2}{1-x}\right)\left(dkxd:x\ge0,x\ne1\right)\)

\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)

\(=\dfrac{\sqrt{x}.\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)

\(=\dfrac{x-2}{\sqrt{x}}\)

\(b,x=4+2\sqrt{3}\Rightarrow P=\dfrac{\left(4+2\sqrt{3}\right)-2}{\sqrt{4+2\sqrt{3}}}\)

\(=\dfrac{2\sqrt{3}+4-2}{\sqrt{\sqrt{3}^2+2\sqrt{3}+1}}\)

\(=\dfrac{2\sqrt{3}+2}{\sqrt{\left(\sqrt{3}+1\right)^2}}\)

\(=\dfrac{2\left(\sqrt{3}+1\right)}{\left|\sqrt{3}+1\right|}\)

\(=\dfrac{2\left(\sqrt{3}+1\right)}{\sqrt{3}+1}=2\)

a: \(P=\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}-1+2}{x-1}\)

\(=\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{x-1}{\sqrt{x}+1}=\dfrac{x-2}{\sqrt{x}}\)

b: Khi x=4+2căn 3 thì \(P=\dfrac{2+2\sqrt{3}}{\sqrt{3}+1}=2\)

23 tháng 2 2023

\(1\dfrac{4}{5}+2\dfrac{5}{7}+3\dfrac{4}{5}+4\dfrac{5}{7}\)

\(\text{=}\left(1\dfrac{4}{5}+3\dfrac{4}{5}\right)+\left(2\dfrac{5}{7}+4\dfrac{5}{7}\right)\)

\(\text{=}1+3+\left(\dfrac{4}{5}+\dfrac{4}{5}\right)+2+4+\left(\dfrac{5}{7}+\dfrac{5}{7}\right)\)

\(\text{=}10+\dfrac{8}{5}+\dfrac{10}{7}\text{=}131\dfrac{1}{35}\)

24 tháng 10 2021

\(1\dfrac{1}{2}x1\dfrac{1}{3}x1\dfrac{1}{4}x1\dfrac{1}{5}x1\dfrac{1}{6}x1\dfrac{1}{7}x1\dfrac{1}{8}x1\dfrac{1}{9}\)

\(=\dfrac{3}{2}x\dfrac{4}{3}x\dfrac{5}{4}x\dfrac{6}{5}x\dfrac{7}{6}x\dfrac{8}{7}x\dfrac{9}{8}x\dfrac{10}{9}\)

\(=x^7.\dfrac{3.4.5.6.7.8.9.10}{2.3.4.5.6.7.8.9}\)

\(=x^7.\dfrac{10}{2}\)

\(=5x^7\)

24 tháng 10 2021

\(=\dfrac{3}{2}\times\dfrac{4}{3}\times\dfrac{5}{4}\times...\times\dfrac{9}{8}\times\dfrac{10}{9}=\dfrac{10}{2}=5\)

21 tháng 10 2021

\(\left(-\dfrac{2}{5}\right)^2\cdot\left|\dfrac{1}{3}-\dfrac{3}{5}\right|-\dfrac{2}{5}\cdot\sqrt{\dfrac{1}{25}}+\dfrac{4}{3}\)

\(=\dfrac{4}{25}\cdot\dfrac{4}{15}-\dfrac{2}{5}\cdot\dfrac{1}{5}+\dfrac{4}{3}\)

\(=\dfrac{16}{375}-\dfrac{2}{25}+\dfrac{4}{3}\)

\(=\dfrac{16}{375}-\dfrac{30}{375}+\dfrac{500}{375}\)

\(=\dfrac{486}{375}=\dfrac{162}{125}\)

21 tháng 10 2021

cảm ơn bạn nha

12 tháng 5 2021

\(\dfrac{3}{x+2}\)=\(\dfrac{5}{2x+1}\)(x khác -1/2 và x khác -2)

=>6x+3=5x+10

<=>x=7 tm 

22 tháng 3 2023

\(\dfrac{5}{x+2}-\dfrac{x-1}{x-2}=\dfrac{12}{x^2-4}+1\left(x\ne-2;x\ne2\right)\)

\(< =>\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\dfrac{\left(x-1\right)\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

suy ra

`5x-10-(x^2 +2x-x-2)=12+x^2 -4`

`<=>5x-10-x^2 -2x+x+2-12-x^2 +4=0`

`<=>-x^2 -x^2 +5x-2x+x-10+2+4=0`

`<=>-x^2 +4x-4=0`

`<=>x^2 -4x+4=0`

`<=>(x-2)^2 =0`

`<=>x-2=0`

`<=>x=2(ktmđk)`

vậy phương trình vô nghiệm

NV
22 tháng 3 2023

ĐKXĐ: \(x\ne\pm2\)

\(\dfrac{5\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{\left(x-1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(\Rightarrow5\left(x-2\right)-\left(x-1\right)\left(x+2\right)=12+\left(x-2\right)\left(x+2\right)\)

\(\Leftrightarrow5x-10-\left(x^2+x-2\right)=12+x^2-4\)

\(\Leftrightarrow-x^2+4x-8=x^2+8\)

\(\Leftrightarrow2x^2-4x+16=0\)

\(\Leftrightarrow2\left(x-1\right)^2+14=0\)

Do \(\left\{{}\begin{matrix}2\left(x-1\right)^2\ge0\\14>0\end{matrix}\right.\) ;\(\forall x\)

\(\Rightarrow2\left(x-1\right)^2+14>0\)

Vậy phương trình đã cho vô nghiệm