CM rằng nếu \(c^2=2\cdot\left(ac+bc-ab\right)\) và b#c , a+b#c thì\(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{a-c}{b-c}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=4\left(a^2+b^2+c^2-ab-ac-bc\right)\\ \Leftrightarrow a^2-2ab+b^2+b^2-2bc-c^2+c^2-2ac+a^2\\ =4a^2+4b^2+4c^2-4ab-4ac-4bc\\ \Leftrightarrow0=2a^2+2b^2+2c^2-2ab-2ac-2bc\\ \Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\\ \Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\Leftrightarrow\left\{\begin{matrix}\left(a-b\right)^2=0\Leftrightarrow a-b=0\Leftrightarrow a=b\\\left(a-c\right)^2=0\Leftrightarrow a-c=0\Leftrightarrow a=c\\\left(b-c\right)^2=0\Leftrightarrow b-c=0\Leftrightarrow b=c\end{matrix}\right.\)
Vậy a=b=c
\(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)
Ta có: \(a^2+b^2+c^2+2ab+2bc+2ac\ge3ab+3bc+3ac\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac\ge0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\) (nhân cả hai vế cho 2)
\(\Leftrightarrow a^2-2ab+b^2+a^2-2ac+c^2+b^2-2bc+c^2\ge0\)
\(\Leftrightarrow\left(a+b\right)^2+\left(a+c\right)^2+\left(b+c\right)^2\ge0\) ( đúng )
Nguyễn Xuân Đình Lực:
mình ghi rõ trên rùi, sắp xếp theo thứ tự luôn cho dễ nhìn kìa bạn:
Cặp 1: $a^3b$ và $abc^2$ tạo ra $a^2bc$
Cặp 2: $b^3c$ và $bca^2$ tạo ra $b^2ca$
Cặp 3: $c^3a$ và $cab^2$ tạo ra $c^2ab$
Lời giải:
Ba số thực $a,b,c$ cần có thêm điều kiện không âm mới đúng.
BĐT cần chứng minh tương đương với:
$ab^3+bc^3+ca^3+2abc(a+b+c)\leq a^3b+b^3c+c^3a+ab^3+bc^3+ca^3+abc(a+b+c)$
$\Leftrightarrow abc(a+b+c)\leq a^3b+b^3c+c^3a(*)$
Áp dụng BĐT Bunhiacopxky:
$(a^3b+b^3c+c^3a)(abc^2+bca^2+cab^2)\geq (a^2bc+b^2ca+c^2ab)^2$
$\Rightarrow a^3b+b^3c+c^3a\geq abc(a+b+c)$
BĐT $(*)$ đúng nên ta có đpcm.
Dấu "=" xảy ra khi $a=b=c$
a,b,c>0
\(VP-VT=a^3b+b^3c+c^3a-abc\left(a+b+c\right)=abc\Sigma\frac{\left(a-b\right)^2}{a}\ge0\)
\(\dfrac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}\)
\(=\dfrac{a^2+\left(a-c\right)^2+c^2+2\left(ab-ac-bc\right)}{b^2+\left(b-c\right)^2+c^2+2\left(ab-ac-bc\right)}\)
\(=\dfrac{a^2+a^2-2ac+c^2+c^2+2ab-2ac-2bc}{b^2+b^2-2bc+c^2+c^2+2ab-2ac-2bc}\)
\(=\dfrac{2a^2+2c^2-4ac+2ab-2bc}{2b^2+2c^2-4bc+2ab-2ac}\)
\(=\dfrac{\left(a-c\right)^2+b\left(a-c\right)}{\left(b-c\right)^2+a\left(b-c\right)}\)
\(=\dfrac{\left(a-c\right)\left(a-c+b\right)}{\left(b-c\right)\left(a-c+b\right)}=\dfrac{a-c}{b-c}\left(đpcm\right)\)
Ta có:
\(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow abc^2+ab^2c+a^2bc-ab-bc-ca=0\left(1\right)\)
Ta cần chứng minh
\(b\left(a^2-bc\right)\left(1-ac\right)=a\left(1-bc\right)\left(b^2-ac\right)\)
\(\Leftrightarrow ab^2c^2-a^2bc^2+ab^3c-b^2c-a^3bc+a^2c-ab^2+a^2b=0\)
\(\Leftrightarrow b\left(abc^2+ab^2c-bc-ab\right)-a^2bc^2-a^3bc+a^2c+a^2b=0\)
\(\Leftrightarrow b\left(ac-a^2bc\right)-a^2bc^2-a^3bc+a^2c+a^2b=0\)
\(\Leftrightarrow-a\left(ab^2c+abc^2+a^2bc-bc-ac-ab\right)=0\)(theo (1) thì đúng)
\(\RightarrowĐPCM\)
ac+bc-ac hay ac+bc-ab vậy bạn?
ac+bc+ab ,, mik nhầm