K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔCHA vuông tại H và ΔCHM vuông tại H có

CH chung

HA=HM

=>ΔCHA=ΔCHM

=>góc ACH=góc MCH

=>CH là phân giác của góc ACM

b: Xét ΔAHC vuông tại H và ΔMHD vuông tại H có

HA=HM

góc HAC=góc HDM

=>ΔHAC=ΔHMD

=>HC=HD

=>AM là trung trực của CD

a: Xet ΔBAM có

BH vừa là đường cao, vừa là trung tuyến

=>ΔBAM cân tại B

=>BA=BM

b: góc BAO+góc CAO=90 độ

góc BOA+góc OAH=90 độ

mà góc CAO=góc OAH

nên góc BAO=góc BOA

nên ΔBAO cân tại B

=>BA=BO=BM

=>BO=BM

Xét ΔBAC và ΔBMC có

BA=BM

góc ABC=góc MBC

BC chung

=>ΔBAC=ΔBMC

=>góc BMC=90 độ

=>OK vuông góc BM

góc KOM+góc BOK=góc BOM

góc KMO+góc BMH=góc BMO

mà góc BOK=góc BMH; góc BOM=góc BMO

nên góc KOM=góc KMO

=>ΔKMO cân tại K

21 tháng 12 2021

a: Xét ΔABH và ΔACH có

AB=AC

AH chung

HB=HC

Do đó: ΔABH=ΔACH

15 tháng 4 2019

tự vẽ hình nha

a)xét tam giac ACH và tam giac MCH có:

                  AH=HM (gt)

                  góc AHC = góc MHC =90 độ

                   HC chung

 suy ra tam giac ACH=tam giac MCH (c.g.c)

suy ra CA=CM(2 góc tương ứng)

b) ta có:tam giac AHC =tam giac MCH(theo câu a)
    suy ra góc ACH = góc MCH ( 2 góc tương ứng)

  suy ra CB là tia phân giác góc ACM   

     hay góc ACB =góc MCB  (1)

xét tam giac ABC và tam giac MBC có:

               AC=MC ( theo câu a)

         góc ACB = góc MCB (theo (1))

              BC chung

suy ra :tam giac ABC = tam giac MBC (c.g.c)

c,d tự làm.

12 tháng 2 2018

(Bạn tự vẽ hình giùm)

a/ \(\Delta AHB\)vuông và \(\Delta AHC\)vuông có: AB = AC (\(\Delta ABC\)cân tại A)

Cạnh AH chung

=> \(\Delta AHB\)vuông = \(\Delta AHC\)vuông (cạnh huyền - cạnh góc vuông) (đpcm)

b/ Ta có \(\Delta AHB\)\(\Delta AHC\) (cm câu a) => HB = HC (hai cạnh tương ứng) => H là trung điểm của BC

=> BH = \(\frac{BC}{2}\)\(\frac{8}{2}\)= 4 (cm)

Ta có \(\Delta AHB\)vuông tại H => AH2 + HB2 = AB2 (định lí Pitago)

=> AH2 = AB2 - HB2

=> AH2 = 52 - 42

=> AH2 = 25 - 16

=> AH2 = 9

=> AH = \(\sqrt{9}\)

=> AH = 3

c/ \(\Delta AHB\)vuông tại H và \(\Delta MHB\)vuông tại H có: AH = MH (gt)

Cạnh HB chung

=> \(\Delta AHB\)vuông = \(\Delta MHB\)vuông (cạnh huyền - cạnh góc vuông) => AB = MB (hai cạnh tương ứng)

=> \(\Delta ABM\)cân tại B (đpcm)

d/ Ta có \(\Delta AHB\)\(\Delta AHC\)(cm câu a) => \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng) (1)

Ta có \(\Delta AHB\)\(\Delta MHB\)(cm câu c) => \(\widehat{M}=\widehat{BAH}\)(hai góc tương ứng) (2)

Từ (1) và (2) => \(\widehat{M}=\widehat{CAH}\)ở vị trí so le trong => BM // AC (đpcm)

26 tháng 6 2020

A B C H M

a ) Ta có ΔABC cân tại A .

\(\Rightarrow\) AB = AC

Có AH là đường cao

\(\Rightarrow\) AH đồng thời là trung tuyến

\(\Rightarrow\) H là trung điểm của BC

Xét ΔAHB và ΔAHC có :

AB = AC

Góc AHB = Góc AHC = 90 

       BH = HC

\(\Rightarrow\) Δ AHB = Δ AHC ( c - g - c )

b ) Xét ΔAHB vuông tại H có .

\(AH=\sqrt{AB^2-BH^2}=\sqrt{5^2-4^2=3}\)

c ) Xét ΔABM có BH vừa là đường cao vừa là trung tuyến .

\(\Rightarrow\) ΔABM cân tại B

d ) Ta có : BAM cân tại B 

\(\Rightarrow\) Góc BAM = Góc BMA

Xét ΔBAC cân tại A có HA là trung tuyến

\(\Rightarrow\) AH đồng thời là tia phân giác của ΔABC .

\(\Rightarrow\) Góc BAH = Góc CAH

\(\Rightarrow\) Góc BMA = Góc HAC

Mà 2 góc này ở vị trí so le trong của BM và AC .

\(\Rightarrow\) BM // AC

26 tháng 6 2020

A B C H M

a) ( Cái này có khá nhiều cách chứng minh nhé . )

Xét tam giác vuông AHB và tam giác vuông AHC có :

AB = AC ( tam giác ABC cân )

AH chung 

=> Tam giác vuông AHB = tam giác vuông AHC ( ch-cgv )

b) => HB = HC ( hai cạnh tương ứng )

Mà BC = 8cm

=> HB = HC = BC/2 = 8/2 = 4cm

Áp dụng định lí Pytago cho tam giác vuông AHB ( AHC cũng được ) ta có :

AB2 = AH2 + HB2

52 = AH2 + 42

=> \(AH=\sqrt{5^2-4^2}=\sqrt{25-16}=3cm\)

c) HM là tia đối của HA

=> ^AHB + ^BHM = 1800

=> 900 + ^BHM = 1800

=> ^BHM = ^AHB = 900 => Tam giác BHM vuông tại H

Xét tam giác vuông AHB và tam giác vuông BHM ta có :

HM = HA ( gt )

 ^BHM = ^AHB ( cmt ) 

HB chung

=> Tam giác AHB = tam giác BHM ( c.g.c )

=> BM = BA ( hai cạnh tương ứng )

Tam giác ABM có BM = BA ( cmt ) => Tam giác ABM cân tại B

d) Ta có : Tam giác AHB = Tam giác AHC ( theo ý a) 

Tam giác AHB = Tam giác BHM ( theo ý c) 

Theo tính chất bắc cầu => Tam giác AHC = tam giác BHM 

=> ^HBM = ^ACH ( hai góc tương ứng )

mà hai góc ở vị trí so le trong 

=> BM // AC ( đpcm )

( Hình có thể k đc đẹp lắm )

a: Ta có: AH⊥BC

nên \(\widehat{AHB}=\widehat{AHC}=90^0\)

b: BH=CH=BC/2=4cm

=>AH=3cm

c: Xét ΔABM có 

BH là đường cao

BH là đường trung tuyến

Do đó: ΔABM cân tại B

d: Xét tứ giác ABMC có 

H là trung điểm của AM

H là trung điểm của BC

Do đó: ABMC là hình bình hành

Suy ra: BM//AC