\(\sqrt{-\sqrt{ }8}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình biết nội quy rồi nên đưng đăng nội quy
ai chơi bang bang 2 kết bạn với mình
mình có nick có 54k vàng đang góp mua pika
ai kết bạn mình cho
Đặt \(\left\{{}\begin{matrix}\sqrt{\sqrt{2}+1}=a\\\sqrt{\sqrt{2}-1}=b\end{matrix}\right.\) \(\Rightarrow a^2+b^2=2\sqrt{2}=\sqrt{8}\)
\(\Rightarrow\sqrt{a^2+b^2}=\sqrt[4]{8}\)
Do đó:
\(A=\dfrac{\sqrt{\sqrt{a^2+b^2}+b}-\sqrt{\sqrt{a^2+b^2}-b}}{\sqrt{\sqrt{a^2+b^2}-a}}>0\)
\(\Rightarrow A^2=\dfrac{2\sqrt{a^2+b^2}-2\sqrt{a^2+b^2-b^2}}{\sqrt{a^2+b^2}-a}=\dfrac{2\left(\sqrt{a^2+b^2}-a\right)}{\sqrt{a^2+b^2}-a}=2\)
\(\Rightarrow A=\sqrt{2}\)
A>0
Bình phương A được :
\(A^2=\frac{\sqrt[4]{8}+\sqrt{\sqrt{2}-1}-2\sqrt{\left(\sqrt[4]{8}+\sqrt{\sqrt{2}-1}\right)\left(\sqrt[4]{8}-\sqrt{\sqrt{2}-1}\right)}+\sqrt[4]{8}-\sqrt{\sqrt{2}-1}}{\sqrt[4]{8}-\sqrt{\sqrt{2}+1}}\)
=\(\frac{2\sqrt[4]{8}-2\sqrt{\sqrt{8}-\sqrt{2}+1}}{\sqrt[4]{8}-\sqrt{\sqrt{2}+1}}\)=\(\frac{2\sqrt[4]{8}-2\sqrt{2\sqrt{2}-\sqrt{2}+1}}{\sqrt[4]{8}-\sqrt{\sqrt{2}+1}}=\frac{2\sqrt[4]{8}-2\sqrt{\sqrt{2}+1}}{\sqrt[4]{8}-\sqrt{\sqrt{2}+1}}=2\)
=> A= \(\sqrt{2}\)
@Vũ Minh Tuấn @Lê Thị Thục Hiền @No choice teen
\(a,\sqrt{8+2\sqrt{15}}-\sqrt{6+2\sqrt{5}}\\ =\sqrt{3}+\sqrt{5}-\left(\sqrt{5}+1\right)=\sqrt{3}-1\\ b,=3-2\sqrt{2}-\left(3\sqrt{2}+1\right)=2-5\sqrt{2}\\ c,=\sqrt{7}-1+\sqrt{7}+1=2\sqrt{7}\\ d,=\sqrt{11}+1-\left(\sqrt{11}-1\right)=2\\ e,=\sqrt{7}-\sqrt{3}-\left(\sqrt{7}-\sqrt{2}\right)=\sqrt{2}-\sqrt{3}\)
a)\(\sqrt{8+4\sqrt{3}}-\sqrt{8-4\sqrt{3}}=\sqrt{\dfrac{1}{2}\left(16+8\sqrt{3}\right)}-\sqrt{\dfrac{1}{2}\left(16-8\sqrt{3}\right)}\)
\(=\sqrt{\dfrac{1}{2}\left(2+2\sqrt{3}\right)^2}-\sqrt{\dfrac{1}{2}\left(2-2\sqrt{3}\right)^2}\)\(=\sqrt{\dfrac{1}{2}}\left(2+2\sqrt{3}\right)-\sqrt{\dfrac{1}{2}}\left(2\sqrt{3}-2\right)=2\sqrt{2}\)
b)\(=\dfrac{\sqrt{16+2.4\sqrt{5}+5}}{4+\sqrt{5}}.\sqrt{\left(2-\sqrt{5}\right)^2}\)\(=\dfrac{\sqrt{\left(4+\sqrt{5}\right)^2}}{4+\sqrt{5}}\left|2-\sqrt{5}\right|=\sqrt{5}-2\)
a) Ta có: \(\sqrt{8+4\sqrt{3}}-\sqrt{8-4\sqrt{3}}\)
\(=\sqrt{6}+\sqrt{2}-\sqrt{6}+\sqrt{2}\)
\(=2\sqrt{2}\)
b) Ta có: \(\dfrac{\sqrt{21+8\sqrt{5}}}{4+\sqrt{5}}\cdot\sqrt{9-4\sqrt{5}}\)
\(=\left(4+\sqrt{5}\right)\left(4-\sqrt{5}\right)\)
=16-5=11
4: \(\sqrt{8+2\sqrt{15}}-\sqrt{8-2\sqrt{15}}\)
\(=\sqrt{5}+\sqrt{3}-\sqrt{5}+\sqrt{3}\)
\(=2\sqrt{3}\)
4) \(\sqrt{8+2\sqrt{15}}-\sqrt{8-2\sqrt{15}}\)
\(=\sqrt{5}+\sqrt{3}-\left(\sqrt{5}-\sqrt{3}\right)=2\sqrt{3}\)
5) \(\sqrt{5+2\sqrt{6}}+\sqrt{8-2\sqrt{15}}\)
\(=\sqrt{2}+\sqrt{3}+\sqrt{5}-\sqrt{3}=\sqrt{2}+\sqrt{5}\)
k: \(\sqrt[3]{\left(4-2\sqrt{3}\right)\left(\sqrt{3}-1\right)}\)
\(=\sqrt[3]{\left(\sqrt{3}-1\right)^3}\)
\(=\sqrt{3}-1\)
Rut gon:
\(B=\frac{\sqrt{8+\sqrt{40+8\sqrt{5}}}+\sqrt{8-\sqrt{40+8\sqrt{5}}}}{\sqrt{50}+\sqrt{250}}\)
Mẫu số bằng \(\sqrt{50}+\sqrt{250}=5\sqrt{2}+5\sqrt{10}=5\sqrt{2}\left(1+\sqrt{5}\right).\)
Kí hiệu tử số là \(A\) thì ta có
\(A^2=\left(\sqrt{8+\sqrt{40+8\sqrt{5}}}+\sqrt{8-\sqrt{40+8\sqrt{5}}}\right)^2\)
\(=8+\sqrt{40+8\sqrt{5}}+2\sqrt{8+\sqrt{40+8\sqrt{5}}}\cdot\sqrt{8-\sqrt{40+8\sqrt{5}}}+8-\sqrt{40+8\sqrt{5}}\)
\(=16+2\sqrt{\left(8+\sqrt{40+8\sqrt{5}}\right)\left(8-\sqrt{40+8\sqrt{5}}\right)}\)
\(=16+2\sqrt{8^2-\left(40+8\sqrt{5}\right)}=16+2\sqrt{24-8\sqrt{5}}\)
\(=16+2\sqrt{4-2\cdot2\cdot2\sqrt{5}+\left(2\sqrt{5}\right)^2}=16+2\sqrt{\left(2-2\sqrt{5}\right)^2}\)
\(=16+2\left|2-2\sqrt{5}\right|=16-4+4\sqrt{5}=12+4\sqrt{5}=4\left(3+\sqrt{5}\right).\)
Vậy \(A=4\left(3+\sqrt{5}\right)=2\left(6+2\sqrt{5}\right)=2\left(\sqrt{5}+1\right)^2.\)
Thành thử \(B=\frac{2\left(\sqrt{5}+1\right)^2}{5\sqrt{2}\left(1+\sqrt{5}\right)}=\frac{\sqrt{2}\left(\sqrt{5}+1\right)}{5}=\frac{\sqrt{10}+\sqrt{2}}{5}.\)
Bài 1:
a) \(\sqrt{72}:\sqrt{8}=\sqrt{72:8}=3\)
b) \(\left(\sqrt{28}-\sqrt{7}+\sqrt{112}\right):\sqrt{7}=5\sqrt{7}:\sqrt{7}=5\)
Bài 2:
a) \(\sqrt{\dfrac{49}{8}}:\sqrt{3\dfrac{1}{8}}=\sqrt{\dfrac{49}{8}:\dfrac{25}{8}}=\sqrt{\dfrac{49}{25}}=\dfrac{7}{5}\)
b) \(\sqrt{54x}:\sqrt{6x}=\sqrt{54x:6x}=\sqrt{9}=3\)
c) \(\sqrt{\dfrac{1}{125}}\cdot\sqrt{\dfrac{32}{35}}:\sqrt{\dfrac{56}{225}}\)
\(=\dfrac{\sqrt{5}}{25}\cdot\dfrac{4\sqrt{2}}{\sqrt{35}}:\dfrac{2\sqrt{14}}{15}\)
\(=\dfrac{\sqrt{5}\cdot4\sqrt{2}\cdot15}{25\cdot\sqrt{35}\cdot\sqrt{14}\cdot2}\)
\(=\dfrac{6}{35}\)
vc gì thế
con mẹ mày