Cho tam giác ABC có AB = 14cm, AC=21 cm . AD là tia phân giác của góc A biết AD = 8cm . Tính độ dài BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: BD+CD=BC
nên CD=14-8=6
Xét ΔBAC có
AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)
\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{4}{3}\)
hay \(AB=\dfrac{4}{3}AC\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2\cdot\dfrac{25}{9}=14^2=196\)
\(\Leftrightarrow AC^2=70.56\)
\(\Leftrightarrow AC=8.4\left(cm\right)\)
\(\Leftrightarrow AB=\dfrac{4}{3}\cdot AC=\dfrac{4}{3}\cdot8.4=11.2\left(cm\right)\)
Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/8=CD/12
=>BD/2=CD/3
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{2}=\dfrac{CD}{3}=\dfrac{BD+CD}{2+3}=\dfrac{10}{5}=2\)
Do đó:BD=4(cm)
Vì AD là đường phân giác ^A nên : \(\frac{AB}{AC}=\frac{BD}{DC}\)( t/c )
\(\Rightarrow\frac{14}{21}=\frac{8}{DC}\Rightarrow DC=\frac{21.8}{14}=\frac{168}{14}=12\)
\(\Rightarrow BC=BD+DC=8+12=20\)cm
a: BC=căn 6^2+8^2=10cm
b: Xét ΔBAK vuông tại A và ΔBIK vuông tại I có
BK chung
góc ABK=góc IBK
=>ΔBAK=ΔBIK
=>KA=KI
c: góc DAI+góc BIA=90 độ
góc CAI+góc BAI=90 độ
mà góc BIA=góc BAI
nên góc DAI=góc CAI
=>AI là phân giác của góc DAC
Xét tam giác ABC, ta có:
\(\Rightarrow\frac{BD}{DC}=\frac{AB}{AC}\)
\(\Rightarrow\frac{8}{DC}=\frac{18}{21}\)
\(\Rightarrow DC=\frac{8.21}{14}=12\left(cm\right)\)
\(\Rightarrow BC=BD+DC\)
\(\Rightarrow BC=8+12\)
\(\Rightarrow BC=20\left(cm\right)\)
#muon roi ma sao con
P/s : AD = 8 cm cơ mà có phải BD đâu ? đề này sai rồi, mà bạn @Hoang lấy đâu vậy
Vì AD là tia phân giác ^A nên :
\(\frac{AB}{AC}=\frac{BD}{DC}\Rightarrow\frac{AB}{BD}=\frac{AC}{DC}\)( tỉ lệ thức )
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{AB}{BD}=\frac{AC}{DC}=\frac{AB+AC}{BD+DC}=\frac{14+21}{BC}=\frac{35}{BC}\)
nếu BD = 8 thì suy ra : \(\frac{35}{BC}=\frac{14}{8}\Leftrightarrow BC=20\)cm