Cho tam giác ABC vuông tại A, M là trung điểm của AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Đường thẳng qua B song song với AC cắt tia DC tại điểm E.
a. Chứng minh: Tam giác ABM=Tam giác CDM
b. Chứng minh: AB=CD và AC vuông góc DE
c. Chứng minh: C là trung điểm của DE
a: Xét ΔABM và ΔCDM có
MA=MC
góc AMB=góc CMD
MB=MD
Do đó: ΔABM=ΔCDM
b: ΔABM=ΔCDM
nên AB=CD và góc ABM=góc CDM
=>AB//CD
=>CE vuông góc với AC
=>AC vuông góc DE