biết số nguyên a chia cho 5 dư 3. Chứng minh a^2 chia cho 5 dư 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có a=5k+3
Nên a2= (5k+3)2=25k2+30k+9=25k2+30k+5+4=5(5k2+6k+1)+4 chia cho 5 dư 4 (dpcm)
Bài 1:
b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)
\(=4n^2-9-4n^2+36n\)
\(=36n-9⋮9\)
a) Vì a chia 3 dư 1 nên a có dạng 3m+1 , vì b chia 3 dư 2 nên b có dạng 3n+2. \(\left(m,n\in N\right)\)
Ta có \(ab=\left(3m+1\right)\left(3n+2\right)=3mn+6m+3n+2\)
\(=3\left(mn+2m+n\right)+2\)
Vậy ab chia 3 dư 2 .
b) Vì a chia 5 dư 4 nên a có dạng 5k-1 \(\left(k\in N\right)\)
Ta có \(a^2=\left(5k-1\right)^2=25k^2-10k+1=5\left(5k^2-2k\right)+1\)
Vậy \(a^2\) chia 5 dư 1 .
a chia 5 dư 3 =>a=5k+3
a chia 5 dư 4 =>a=5c+4
=>ab=(5k+3)(5c+4)=(5k+3)5c+(5k+3)4=(5k+3)5c+5.4k+12
=5[(5k+3)c+4k]+5.2+2=5[(5k+3)c+4k+1]+2 chia 5 dư 2
=>đpcm
1) a chia 6 dư 2 => a= 6k+2
b chia 6 dư 3 => b= 6k+3
=> ab=\(\left(6k+2\right)\left(6k+3\right)=36k^2+30k+6\)=> chia hết cho 6
2) a= 5k+2; b=5k+3
=> \(ab=\left(5k+2\right)\left(5k+3\right)=25k^2+25k+6=25k\left(k+1\right)+6\)
=> dễ thấy 25k(k+1) chia hết cho 5. 6 chia 5 dư 1
=> ab chia 5 dư 1
Do a chia cho 5 dư 3=> a=5k+3 (k \(\in N\))
b chia cho 5 dư 4=> b= 5q+4 ( \(q\in N\))
=> ab= (5k+3)(5q+4)
ab= 25kq+20k+15q+12
ab= 25kq+20k+15q+10+2
ab= 5(5kq+4k+3q+2)+2
vì 5 \(⋮\) 5
=> 5(5kq+4k+3q+2) \(⋮\) 5
=> 5(5kq+4k+3q+2) +2 chia cho 5 dư 2
Vậy ab chia cho 5 dư 2 (đpcm)
----An cố gắng học tốt Toán nhá----
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!
ta có a=5k+3
Nên a2= (5k+3)2=25k2+30k+9=25k2+30k+5+4=5(5k2+6k+1)+4 chia cho 5 dư 4 (dpcm)