a) Tính nhanh : A = 1- 2 + 3 - 4 +...+ 99 - 100
b) Tìm số nguyên n sao cho : n + 5 chia hết cho n - 2 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(3n+5⋮3n-1\Rightarrow6+3n-1⋮3n-1\)
Mà \(3n-1⋮3n-1\Rightarrow6⋮3n-1\)
\(\Rightarrow3n-1\inƯ\left(6\right)\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
\(\Rightarrow3n\in\left\{-5;-2;-1;0;2;3;4;7\right\}\)
\(\Rightarrow n\in\left\{\frac{-5}{3};\frac{-2}{3};\frac{-1}{3};0;\frac{2}{3};1;\frac{4}{3};\frac{7}{3}\right\}\)
Mà \(n\in N\)
\(\Rightarrow n\in\left\{0;1\right\}\)
b)\(2n+3⋮2n-1\Rightarrow4+2n-1⋮2n-1\)
Mà \(2n-1⋮2n-1\Rightarrow4⋮2n-1\)
\(\Rightarrow2n-1\in\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow2n\in\left\{-3;-1;0;2;3;5\right\}\)
\(\Rightarrow n\in\left\{\frac{-3}{2};\frac{-1}{2};0;1;\frac{3}{2};\frac{5}{2}\right\}\)
Mà \(n\in N\)
\(\Rightarrow n\in\left\{0;1\right\}\)
Hok Tốt!
1)Ta có:\(2^{60}=\left(2^3\right)^{20}=8^{20}\)
\(3^{40}=\left(3^2\right)^{20}=9^{20}\)
Vì \(8^{20}< 9^{20}\Rightarrow2^{60}< 3^{40}\)
2)Gọi d là ƯCLN(n+3,2n+5)(d\(\in N\)*)
Ta có:\(n+3⋮d,2n+5⋮d\)
\(\Rightarrow2n+6⋮d,2n+5⋮d\)
\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vì ƯCLN(n+3,2n+5)=1\(\RightarrowƯC\left(n+3,2n+5\right)=\left\{1,-1\right\}\)
3)\(A=5+5^2+5^3+5^4+...+5^{98}+5^{99}\)(có 99 số hạng)
\(A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{97}+5^{98}+5^{99}\right)\)(có 33 nhóm)
\(A=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{97}\left(1+5+5^2\right)\)
\(A=5\cdot31+5^4\cdot31+...+5^{97}\cdot31\)
\(A=31\left(5+5^4+...+5^{97}\right)⋮31\left(đpcm\right)\)
6)Đặt \(A=2^1+2^2+2^3+...+2^{100}\)
\(2A=2^2+2^3+2^4+...+2^{101}\)
\(2A-A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)
\(A=2^{101}-2\)
\(\Rightarrow2^1+2^2+2^3+...+2^{100}-2^{101}=2^{101}-2-2^{101}=-2\)
a) Ta có : n-2017\(⋮\)n-2018
\(\Rightarrow\)n-2018+1\(⋮\)n-2018
Vì n-2018\(⋮\)n-2018 nên 1 \(⋮\)n-2018
\(\Rightarrow n-2018\inƯ\left(1\right)=\left\{\pm1\right\}\)
+) n-2018=-1
n=2017 (thỏa mãn)
+) n-2018=1
n=2019 (thỏa mãn)
Vậy n\(\in\){2017;2019}
c) Ta có : 2n-3\(⋮\)2n-5
\(\Rightarrow\)2n-5+2\(⋮\)2n-5
Vì 2n-5\(⋮\)2n-5 nên 2\(⋮\)2n-5
\(\Rightarrow2n-5\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
+) 2n-5=-1\(\Rightarrow\)2n=4\(\Rightarrow\)n=2 (thỏa mãn)
+) 2n-5=1\(\Rightarrow\)2n=6\(\Rightarrow\)n=3 (thỏa mãn)
+) 2n-5=-2\(\Rightarrow\)2n=3\(\Rightarrow\)n=1,5 (không thỏa mãn)
+) 2n-5=2\(\Rightarrow\)2n=7\(\Rightarrow\)n=3,5 (không thỏa mãn)
Vậy n\(\in\){2;3}
Ta có \(\frac{3n+2}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3+\frac{5}{n-1}\)
để A có giá trị nguyên thì 5 phải chia hết cho n-1 hay n-1 là ước của 5
Ư(5)={5,1,-1,-5}
\(\Rightarrow\)n={6,2,0,-4}
gọi số cần tìm là A,Ta có: A+2CHIA HẾT CHO 3,4,5,6 HAY A+2 là bội chung của 3,4,5,6
BCNN(3,4,5,6)=60
\(\Rightarrow A+2=60.n\Rightarrow n=1,2,3,4,.... \)
lần lượt thử các số n.
Ta thấy n=7 thì A=418 chia hết cho 11
vậy số nhỏ nhất là 418
a/ \(n^2-2⋮2n+3\)
Mà \(2n+3⋮2n+3\)
\(\Leftrightarrow\hept{\begin{cases}2n^2-4⋮2n+3\\2n+3⋮2n+3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2n^2-4⋮2n+3\\2n^2+9⋮2n+3\end{cases}}\)
\(\Leftrightarrow13⋮2n+3\)
\(\Leftrightarrow2n+3\inƯ\left(13\right)\)
\(\Leftrightarrow\orbr{\begin{cases}2n+3=1\\2n+3=13\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}n=-1\\n=\frac{11}{2}\end{cases}}\)
Vậy ...
b/ \(n-7⋮n+3\)
Mà \(n+3⋮n+3\)
\(\Leftrightarrow10⋮n+3\)
\(\Leftrightarrow n+3\inƯ\left(10\right)\)
Ta có các trường hợp :
+) n + 3 = 1 => n = -2
+) n + 3 = 2 => n = -1
+) n + 3 = 5 => n = 2
+) n + 3 = 10 => n = 7
Vậy ...
a. 3n ⋮ -2
Vì 3 ⋮̸ -2 nên để 3n ⋮ -2 thì n ⋮ -2
=> n ∈ B(-2)
=> n = -2k (k ∈ N)
Vậy n có dạng -2k (k ∈ N)
b. n + 5 ⋮ 5
=> n + 5 ∈ B(5)
=> n + 5 = 5k (k ∈ N)
=> n = 5k - 5 (k ∈ N)
Vậy n có dạng 5k - 5 (k ∈ N)
c. 6 ⋮ n
=> n ∈ Ư(6) = {1;-1;2;-2;3;-3;6;-6}
=> n ∈ {1;-1;2;-2;3;-3;6;-6}
d. 5 ⋮ n - 1
=> n - 1 ∈ Ư(5) = {1;-1;5;-5}
=> n ∈ {2;0;6;-4}
e. n + 5 ⋮ n - 2
=> n - 2 + 7 ⋮ n - 2
=> 7 ⋮ n - 2
=> n - 2 ∈ Ư(7) = {1;-1;7;-7}
=> n ∈ {3;1;9;-5}
g. 2n + 1 ⋮ n - 5
=> 2n - 10 + 11 ⋮ n - 5
=> 2(n - 5) + 11 ⋮ n - 5
=> 11 ⋮ n - 5
=> n - 5 ∈ Ư(11) = {1;-1;11;-11}
=> n ∈ {6;4;16;-6}
5, a,
Ta có ƯCLN(a,b)=6 \(\Rightarrow\hept{\begin{cases}a_1.6=a\\b_1.6=b\end{cases}}\) với (a1;b1) = 1
=> a+b = a1.6+b1.6 = 6(a1+b1) = 72
=> a1+b1 = 12 = 1+11=2+10=3+9=4+8=5+7=6+6 (hoán vị của chúng)
Vì (a1,b1) = 1
=> a1+b1 = 1+11=5+7
* Với a1+b1 = 1+11
+) TH1: a1 = 1; b1=11 => a =6 và b = 66
+) TH2: a1=11; b1=1 => a=66 và b = 6
* Với a1+b1 = 5+7
+)TH1: a1=5 ; b1=7 => a=30 và b=42
+)TH2: a1=7;b1=5 => a=42 và b=30
Vậy.......
a.S=1-2+3-4+...+99-100
=(1-2)+(3-4)+...+(99-100)
=(-1)+(-1)+...+(-1)
Vì từ 1->100 nên có 50 cặp
=> có 50 số -1
=>(-1)+(-1)+...+(-1)=-50
=>1-2+3-4+...+99-100=-50
b. n + 5 chia hết cho n - 2
n - 2 + 7 chia hết cho n - 2
Mà n - 2 chia hết cho n - 2
=> 7 chia hết cho n - 2
n - 2 thuộc Ư(7) = {-7 ; -1 ; 1 ; 7}
n - 2 = -7 => n = -5
n - 2 =-1 => N = 1
n - 2 = 1 => n = 3
n - 2 = 7 => n = 9
Vậy n thuộc {-5 ; 1 ; 3 ; 9}
Toán nha lộn