Tìm x,y ∈ N, biết: \(\dfrac{xy+3x-2y-6}{y+3}\)=3
Giải hộ mình với đang cần rất gấp ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ \(xy-3x=-19\)
\(x\left(y-3\right)=-19=-1.19=-19.1\)
Từ đó bn tự lập bảng nhé
2/\(3x+4y-xy=16\)
\(\Leftrightarrow3x+4y-xy-12=16-12\)
\(\Leftrightarrow4y-xy-12+3x=4\)
\(\Leftrightarrow y\left(4-x\right)-3\left(4-x\right)=4\)
\(\Leftrightarrow\left(4-x\right)\left(y-3\right)=4\)
từ đó bn tự lập bảng
3/\(xy+3x-2y=11\)
\(x\left(y-3\right)+2y-6=11-6\)
\(x\left(y-3\right)+2\left(y-3\right)=5\)
\(\left(y-3\right)\left(x+2\right)=5\)
Từ đây cx tự lập bảng
4/ \(xy+3x+2y=-3\)
\(x\left(y+3\right)+2y+6=-3+6\)
\(x\left(y+3\right)+2\left(y+3\right)=3\)
\(\left(y+3\right)\left(x+2\right)=3\)
tới đây cx tự lập bảng ra nhé!!
hok tốt!!
a)x.y=6
=> x.y=6=1.6=2.3=(-1).(-6)=(-2).(-3)=...
Ta có bảng giá trị sau:
x | 1 | 6 | -1 | -6 | 2 | 3 | -2 | -3 |
y | 6 | 1 | -6 | -1 | 3 | 2 | -3 | -2 |
Vậy (x,y) thuộc {(1;6);(6;1);(-1;-6);(-6;-1);(2;3);(3;2);(-2;-3);(-3;-2)}
b)x.(y-1)=-5
=>x.(y-1)=-5=1.(-5)=5.(-1)
Ta có bảng giá trị sau:
y-1 | -5 | 1 | -1 | 5 |
x | 1 | -5 | 5 | -1 |
y | -4 | 2 | 0 | 6 |
Bạn tự ghi kết quả tương tự như câu a nhé
c)(y-1).(x-2)=7
=>(y-1).(x-2)=7=1.7=(-1).(-7)=...
Ta có bảng giá trị sau:
y-1 | 1 | 7 | -1 | -7 |
x-2 | 7 | 1 | -7 | -1 |
x | 9 | 3 | -5 | -3 |
y | 2 | 8 | 0 | -6 |
Đáp án tự ghi nhé
d)xy+3x-2y=11
xy+3x-2y-6=5
x.(y+3)-2.(y+3)=5
=>(y+3).(x-2)=5
Ta có bảng giá trị sau:
y+3 | 1 | 5 | -1 | -5 |
x-2 | 5 | 1 | -5 | -1 |
x | 7 | 3 | -3 | 1 |
y | -2 | 2 | -4 | 8 |
Bạn làm tương tự câu d nhé,mình mệt lắm rồi.Nếu ko làm được thì bạn hỏi người khác nhé
ĐỪNG QUÊN CHO MÌNH 1 K ĐÚNG
a) vì x.y =6 mà x; y thuộc Z
nên
bảng giá trị
| |||||||||||||||||||
Xy-3x=-19
=> x(y - 3) = -19
x | -1 | 1 | -19 | 19 |
y-3 | 19 | -19 | 1 | -1 |
y | 22 | -16 | 4 | 2 |
Xy+3x-2y=11
=> x(y + 3) - 2y - 6 = 5
=> x(y + 3) - 2(y + 3) = 5
=> (x - 2)(y + 3) = 5
xét bảng như câu a nha
3x+4y-xy=16
=> x(3 - y) - 12 + 4y = 4
=> x(3 - y) -4(3 - y) = 4
Xy+3x+2y=-3
=> x(y + 3) + 2y + 6 = 3
=> x(y + 3) + 2(y + 3) = 3
=> (x + 2)(y + 3) = 3
\(xy+3x+2y=-3\)
\(x\left(y+3\right)+2y+6=-3+6\)
\(x\left(y+3\right)+2\left(y+3\right)=3\)
\(\left(y+3\right)\left(x+2\right)=3\)
Th1: \(\Rightarrow\hept{\begin{cases}y+3=1\\x+2=3\end{cases}\Rightarrow\hept{\begin{cases}x=-2\\x=1\end{cases}}}\)
Th2: \(\Rightarrow\hept{\begin{cases}y+3=3\\x+2=1\end{cases}\Rightarrow\hept{\begin{cases}y=0\\x=-1\end{cases}}}\)
Th3: \(\Rightarrow\hept{\begin{cases}y+3=-1\\x+2=-3\end{cases}\Rightarrow\hept{\begin{cases}y=-4\\x=-5\end{cases}}}\)
Th4: \(\Rightarrow\hept{\begin{cases}y+3=-3\\x+2=-1\end{cases}\Rightarrow\hept{\begin{cases}y=-6\\x=-3\end{cases}}}\)
Vậy.....
hok tốt!!
Lời giải:
Từ ĐKĐB suy ra:
$-x^2+5xy+2y^2=3(x^2+y^2)$
$\Leftrightarrow 4x^2-5xy+y^2=0$
$\Leftrightarrow 4x(x-y)-y(x-y)=0$
$\Leftrightarrow (4x-y)(x-y)=0$
$\Rightarrow 4x=y$ hoặc $x=y$.
Nếu $4x=y$. Thay vô PT $(1)$ thì:
$x^2+(4x)^2=1\Rightarrow x=\pm \frac{1}{\sqrt{17}}$
$\Rightarrow x=\pm \frac{4}{\sqrt{17}}$ (tương ứng)
Trường hợp $x=y$ tương tự, ta tìm được $(x,y)=(\pm \frac{1}{\sqrt{2}}; \pm \frac{1}{\sqrt{2}})$
Lời giải:
$\frac{xy+3x-2y-6}{y+3}=3$
$\Rightarrow xy+3x-2y-6=3y+9$
$\Rightarrow xy+3x-5y-15=0$
$\Rightarrow x(y+3)-5(y+3)=0$
$\Rightarrow (y+3)(x-5)=0$
$\Rightarrow y+3=0$ hoặc $x-5=0$
Mà $y$ tự nhiên nên $y+3>0$. Do đó $x-5=0$
$\Rightarrow x=5$
Vậy $x=5$ và $y$ là số tự nhiên tùy ý.