Cho tam giác ABC có A >90 độ , AB=AC các đường trục trực của các cạnh AB, AC cắt nhau tại O và lần lượt cắt cạnh BC tai D và E . CMR
a) O là tâm đường tròn ngoại tiếp của tam giác ABC
b) góc DAB = góc EAC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Vì BD, BF là các tiếp tuyến của (O) nên OD ⊥ BD, OF ⊥ BF.
Xét 2 tam giác vuông OBD và OBF có
O B chung OBD=OBF(gt) = > Δ O B D = Δ O B F (cạnh huyền–góc nhọn)
⇒ BD = BF
Mà OD = OF = r nên OB là trung trực của DF ⇒ OB ⊥ DF ⇒ ∆ KIF vuông tại K.
Mà OD = OF = r nên OB là trung trực của DF ⇒ OB ⊥ DF ⇒ ∆ KIF vuông tại K. D O E = 90 o
Theo quan hệ giữa góc nội tiếp và góc ở tâm cho đường tròn (O), ta có:
D F E = 1 2 D O E = 45 o
⇒ ∆ KIF vuông cân tại K.
=>BIF=45o
a: góc BEC=góc BDC=1/2*sđ cung BC=90 độ
=>CE vuông góc AB, BD vuông góc AC
góc AEH=góc ADH=90 độ
=>AEHD nội tiếp đường tròn đường kính AH
=>I là trung điểm của AH
b: Gọi giao của AH với BC là N
=>AH vuông góc BC tại N
góc IEO=góc IEH+góc OEH
=góc IHE+góc OCE
=90 độ-góc OCE+góc OCE=90 độ
=>IE là tiếp tuyến của (O)
a: Xét (O) có
ΔBFC nội tiếp
BC là đường kính
Do đó: ΔBFC vuông tại F
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
Xét ΔABC có
BE,CF là đường cao
BE cắt CF tại H
Do đó: AH vuông góc với BC tại D
b:
Xét tứ giác CDFA có góc CDA=góc CFA=90 độ
nên CDFA là tứ giác nội tiếp
=>góc BFD=góc BCA
Xét tứ giác BFEC có góc BFC=góc BEC=90 độ
nên BFEC là tứ giác nội tiếp
=>góc AFE=góc ACB
Ta có: góc COE=180 độ-2 góc C
góc EFD=180 độ-góc AFE-góc BFD
=180 độ-2 góc C
=>góc COE=góc EFD
=>DOEF là tứ giác nội tiếp