a)Cho phân số a/b (a , b thuộc N , b khác 0)
Gỉa sử a/b < 1 và m thuộc N , m khác 0.Chứng tỏ rằng:
a/b < a+m/b+m
b)Áp dụng kết quả ở câu a) để so sánh 434/561 và 441/568
MỌI NGƯỜI LÀM BÀI GIẢI CHO MK NHÉ
MÌNH ĐANG CẦN GẤP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
So sánh: \(\dfrac{434}{561}\) và \(\dfrac{441}{568}\)
* Bài làm:
Vì \(\dfrac{434}{561}\) < 1 => \(\dfrac{434}{561}\) < \(\dfrac{434+7}{561+7}\) hay \(\dfrac{434}{561}\) < \(\dfrac{441}{568}\)
a) \(\dfrac{a}{b}\)=\(\dfrac{a\left(b+m\right)}{b\left(b+m\right)}\)=\(\dfrac{ab+am}{b^2+bm}\) ; (1)
\(\dfrac{a+m}{b+m}\)=\(\dfrac{b\left(a+m\right)}{b\left(b+m\right)}\)=\(\dfrac{ab+bm}{b^2+bm}\) ; (2)
\(\dfrac{a}{b}\) < \(1\) \(\Rightarrow\) \(a\) < \(b\), suy ra \(ab+am\) < \(ab+bm\). (3)
Từ (1), (2) và (3) ta có: \(\dfrac{a}{b}\) < \(\dfrac{a+m}{b+m}\)
b) Áp dụng, rõ ràng \(\dfrac{434}{561}\) < 1 nên \(\dfrac{434}{561}\) < \(\dfrac{434+7}{561+7}\)=\(\dfrac{441}{568}\)
a) Thực hiện quy đồng a b = a ( b + m ) b ( b + m ) = a b + a m b 2 + b m ;
a + m b + m = b ( a + m ) b ( b + m ) = a b + b m b 2 + b m . Vì a b < 1=> a < b => ab +am < ab + bm
Từ đó thu được a b < a + m b + m
b) 437 564 < 437 + 9 564 + 9 = 446 573 .
Câu 1: Giải
\(\frac{a}{b}< 1\Leftrightarrow a< b\)
\(\Leftrightarrow am< bm\)
\(\Leftrightarrow ab+am< ab+bm\)
\(\Leftrightarrow a\left(b+m\right)< b\left(a+m\right)\)
\(\Leftrightarrow\frac{a}{b}< \frac{a+m}{b+m}\left(đpcm\right)\)
Câu 2: Giải
Ta có : \(\hept{\begin{cases}\frac{437}{564}=1-\frac{127}{564}\\\frac{446}{573}=1-\frac{127}{573}\end{cases}}\)
Vì \(\frac{127}{564}>\frac{127}{573}\) nên \(\frac{437}{564}>\frac{446}{573}\)
1. Do \(\frac{a}{b}< 1\Leftrightarrow\)a<b \(\Leftrightarrow\)a+n<b+n
Ta có: \(\frac{a}{b}\)= 1 - \(\frac{a-b}{b}\)
\(\frac{a+n}{b+n}\)= 1- \(\frac{a-b}{b+n}\)
Do \(\frac{a-b}{b}\)>\(\frac{a-b}{b+n}\)=> \(\frac{a}{b}\)<\(\frac{a+n}{b+n}\)
2.Tương tự
1) Với a, b ∈ Z, b> 0
- Khi a , b cùng dấu thì \(\frac{a}{b}\) > 0
- Khi a,b khác dấu thì \(\frac{a}{b}\)< 0
Tổng quát: Số hữu tỉ \(\frac{a}{b}\) ( a,b ∈ Z, b # 0) dương nếu a,b cùng dấu, âm nếu a, b khác dấu, bằng 0 nếu a = 0
Theo đề bài ta có x = a/m, y = b/m (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y