K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2017

Đầu bài còn thiếu dữ kiện xem lại nha bạn

21 tháng 2 2017

Thiếu cài gì. có thể không thiếu. nghiên cứu kỹ đí

@vuilachinh nghiem túc đấy!

31 tháng 5 2019

bạn chỉ mình câu a với

17 tháng 6 2017

search : https://hoc24.vn/hoi-dap/question/56467.html

AH
Akai Haruma
Giáo viên
29 tháng 3 2021

1. 

Câu 1:

a) $CD\perp AC, BH\perp AC$ nên $CD\parallel BH$

Tương tự: $BD\parallel CH$

Tứ giác $BHCD$ có hai cặp cạnh đối song song nhau (BH-CD và BD-CH) nên là hình bình hành

b) 

Áp dụng bổ đề sau: Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền thì bằng 1 nửa cạnh huyền.

Ta có:

$BO$ là trung tuyến của tgv $ABD$ nên $BO=\frac{AD}{2}$

$CO$ là trung tuyến của tgv $ACD$ nên $CO=\frac{AD}{2}$

$\Rightarrow BO=CO(1)$ 

$OK\parallel AH, AH\perp BC$ nên $OK\perp BC(2)$

Từ $(1);(2)$ ta dễ thấy $\triangle OBK=\triangle OCK$ (ch-cgv)

$\Rightarrow BK=CK$ hay $K$ là trung điểm $BC$

Mặt khác:

$HBDC$ là hình bình hành nên $HD$ cắt $BC$ tại trung điểm mỗi đường. Mà $K$ là trung điểm $BC$ nên $K$ là trung điểm $HD$

Xét tam giác $AHD$ có $O$ là t. điểm $AD$, $K$ là t. điểm $HD$ nên $OK$ là đường trung bình của tam giác $AHD$ ứng với cạnh $AH$.

$\Rightarrow OK=\frac{AH}{2}=3$ (cm)

 

AH
Akai Haruma
Giáo viên
29 tháng 3 2021

Hình câu 1:

undefined

25 tháng 5 2017

*Gọi G là giao điểm của AH và DE

Ta có: GA = GD = GH = GE (tính chất hình chữ nhật)

Suy ra tam giác GHD cân tại G

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra tam giác NCE cân tại N ⇒ NC = NE     (16)

Từ (13) và (16) suy ra: NC = NH hay N là trung điểm của CH.