có thể rút gọn được các phân số 2/3 ; -3/5 ; 12/25 hay không ?
tử và mẫu của mỗi phân số có ước chung là những số nào ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi k là ước chung nguyên tố của 18n + 3 và 21n +7
=> 18n + 3 chia hết cho k => 7.(18n+3) chia hết cho k
21n + 7 chia hết cho k => 6. (21n + 7) chia hết cho k
=> 6.(21n + 7) - 7.(18n + 3) chia hết cho k
=> 21 chia hết cho k
=> k = 3 hoặc 7
+) Nếu k = 3 => 21n + 7 chia hết cho 3 , điều này không xảy ra vì 21n luôn chia hết cho 3 ; 7 chia cho 3 dư 1 => 21n + 7 chia cho 3 dư 1 => k = 3 không xảy ra
+) Nếu k = 7: Vì 21n + 7 luôn chia hết cho 7 với mọi n; ta cần tìm n để 18n + 3 chia hết cho 7
=> 21n - 3n + 3 chia hết cho 7 => 3- 3n chia hết cho 7 => 3 - 3n = 7t (t thuộc N)
=> 1 - n = \(\frac{7t}{3}\) => n = 1 - \(\frac{7t}{3}\)vì n; t thuộc N => t = 0 => n = 1
Vậy có duy nhất giá trị n = 1 thoả mãn yêu cầu.
Tìm tất cả các số n thuộc N để phân số 18n+3/21n+7 có thể rút gọn được?
(Toán lớp 2)(chép mk ko tick)
Tất cả n chỉ có dạng n = 7k + 1 thì phân số rút gọn được.
Nếu bạn thực sự muốn giải, nhắn lại cho mình.
ko bởi vì chúng đều là phân số tối giản