tim so tu nhien n de phan so sau day toi gian
a)3/n,5/n,12/n (n nho nhat)
b)5/n+8;6/n+9;7/n+10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có dạng chung của mỗi phân số là \(\frac{a}{a+n+1}\)
Để \(\frac{a}{a+n+1}\)là phân số tối giản thì UCLN(a; a + n + 1) = 1
Mà a chia hết cho a => UCLN(a; n + 1) = 1
=> n + 1 là số nguyên tố nhỏ nhất nhưng lớn hơn GTLN của a tức à 31
=>n + 1 = 37
=> n = 36
Vậy......
\(\frac{1}{n+3};\frac{2}{n+4};...;\frac{2002}{n+2004}\)
\(\frac{1}{\left(n+2\right)+1};\frac{2}{\left(n+2\right)+2};...;\frac{2002}{\left(n+2\right)+2002}\)
Vậy để các phân số trên tối giản thì n+2 phải nguyên tố với các số 1;2;3;4;5;...;2002
Mà n nhỏ nhất => n là số nguyên tố nhỏ nhất lớn hơn 2002 là 2003.
Vậy n là 2003
Ta có: n+3 chia hết n-12
=> n-12+15 chia hết n-12
mà n-12 chia hết n-12
=> 15 chia hết n-12
=> n-12 thuộc Ư(15)={1; -1; 3; -3; 5; -5; 15; -15}
=> n thuộc {3; 11; 15; 9; 17; 7; 27; -3}
\(a;\frac{2n+5}{n+3}\)
Gọi \(d\inƯC\left(2n+5;n+3\right)\Rightarrow3n+5⋮d;n+3⋮d\)
\(\Rightarrow2n+5⋮d\)và \(2\left(n+3\right)⋮d\)
\(\Rightarrow\left[\left(2n+6\right)-\left(2n+5\right)\right]⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy \(\frac{2n+5}{n+3}\)là phân số tối giản
\(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)+5-6}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=2-\frac{1}{n+3}\)
Với \(B\in Z\)để n là số nguyên
\(\Rightarrow1⋮n+3\Rightarrow n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow n\in\left\{-2;-4\right\}\)
Vậy.....................
a, \(\frac{2n+5}{n+3}\)Đặt \(2n+5;n+3=d\left(d\inℕ^∗\right)\)
\(2n+5⋮d\) ; \(n+3⋮d\Rightarrow2n+6\)
Suy ra : \(2n+5-2n-6⋮d\Rightarrow-1⋮d\Rightarrow d=1\)
Vậy tta có đpcm
b, \(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=\frac{-1}{n+3}=\frac{1}{-n-3}\)
hay \(-n-3\inƯ\left\{1\right\}=\left\{\pm1\right\}\)
-n - 3 | 1 | -1 |
n | -4 | -2 |
Để A có giá trị dương
Thì 5n - 7 chia hết cho 9
Nên : 5n - 7 thuôc BC của 9
=> BC(9) = {0;9;18;27;......}
=> 5n - 7 = {0;9;18;27;......}
=> 5n = {7;16;25;32;........}
=> mà n là số tự nhiên nhỏ nhất và A đạt giá trị dương nhỏ nhất
Nên => 5n = 25
=> n = 5