K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2017

\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}}{\frac{2010}{1}+\frac{2009}{2}+\frac{2008}{3}+...+\frac{1}{2010}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}}{\left(\frac{2009}{2}+1\right)+\left(\frac{2008}{3}+1\right)+....+\left(\frac{1}{2010}+1\right)}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}}{\frac{2011}{2}+\frac{2011}{3}+....+\frac{2011}{2010}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}{2011\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}\right)}\)

\(=\frac{1}{2011}\)

17 tháng 2 2017

Bước1: Chứng minh: x>ln(1+x)>x-x^2/2 (khảo sát hàm lớp 12)
Bước2: Đặt A=1+1/2+1/3+...+1/N. 
B=1+1/2^2+1/3^2+...+1/N^2. 
C=1+1/1.2+1/2.3+...+1/(N-1).N 
D=ln(1+1)+ln(1+1/2)+ln(1+1/3)+... 
...+ln(1+1/N). 

Bước 3: Nhận xét: 1/k(k+1)=1/k-1/(k+1) 
suy ra C=2-1/N <2 

Bước 4: Nhận xét ln(k+1)-lnk=ln(1+1/k) 
suy ra D=ln(N+1) 

Bước 5: Nhận xét B<C<2 
Bước 6: Chứng minh A->+oo (Omerta_V đã CM) 
Bước 7: Từ Bước1 suy ra: 
A>D>A-1/2B>A-1. 
Bước 8: Vậy A xấp sỉ D với sai số tuyệt đối bằng 1. 
Mà A->+oo. Nên khi N rất lớn thì sai số tương đối có thể coi là 0. 
Cụ thể hơn Khi N>2^k thì sai số tương đối < k/2 
Vậy khi N lớn hơn 1000000 thì ta có thể coi A=ln(N+1). 
vậy đáp án là 5

29 tháng 7 2015

Ghi lộn đề thiếu thì phải. Hình như thiếu phân số 1/2011

18 tháng 2 2017

\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+......+\frac{1}{2011}}{\frac{2010}{1}+\frac{2009}{2}+\frac{2008}{3}+....+\frac{1}{2010}}\)

13 tháng 9 2016

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}}{\frac{2010}{1}+\frac{2009}{2}+\frac{2008}{3}+...+\frac{1}{2010}}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{2011}}{\left(\frac{2009}{2}+1\right)+\left(\frac{2008}{3}+1\right)+...+\left(\frac{1}{2010}+1\right)+1}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}}{\frac{2011}{2}+\frac{2011}{3}+...+\frac{2011}{2010}+\frac{2011}{2011}}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}}{2011\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}+\frac{1}{2011}\right)}\)

\(A=\frac{1}{2011}\)

 

13 tháng 9 2016

dunt

7 tháng 2 2018

Bạn giải cũng được đấy alibaba nguyễn, nhưng theo mình thì làm cách này dễ hiểu hơn!

Ta có: \(C=\frac{\frac{2010}{1}+\frac{2009}{2}+\frac{2008}{3}+...+\frac{1}{2010}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}\)

Đặt \(A=\frac{2010}{1}+\frac{2009}{2}+\frac{2008}{3}+...+\frac{1}{2010}\)

\(A=\frac{2010}{1}+1+\frac{2009}{1}+1+\frac{2008}{1}+1+...+\frac{1}{2010}+1-2010\)

\(=\frac{2011}{1}+\frac{2011}{2}+\frac{2011}{3}+...+\frac{2011}{2010}-\frac{2011.2010}{2011}\)

\(=2011\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}-\frac{2010}{2011}\right)\)

Đặt \(B=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}\)

\(B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}-1\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}-\frac{2010}{2011}\)

Ta có: \(C=\frac{A}{B}=2011\)(lấy A-B)

Ta có :

\(2010A=\dfrac{2010^{2012}+2010}{2010^{2012}+1}=\dfrac{2010^{2012}+1+2009}{2010^{2012}+1}=1+\dfrac{2009}{2010^{2012}+1}\)

\(2010B=\dfrac{2010^{2011}+2010}{2010^{2011}+1}=\dfrac{2010^{2011}+1+2009}{2010^{2011}+1}=1+\dfrac{2009}{2010^{2011}+1}\)

Vì \(1+\dfrac{2009}{2010^{2012}+1}< 1+\dfrac{2009}{2010^{2011}+1}\Rightarrow A< B\)

~ Học tốt ~

17 tháng 2 2017

\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}{\frac{2010}{1}+\frac{2009}{2}+...+\frac{1}{2010}}\)

\(\Rightarrow A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}{\left(1+1+1+...+1\right)+\frac{2009}{2}+\frac{2008}{3}+...+\frac{1}{2010}}\)

\(\Rightarrow A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}{1+\left(1+\frac{2009}{2}\right)+\left(1+\frac{2008}{3}\right)+...+\left(1+\frac{1}{2010}\right)}\)

\(\Rightarrow A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}{\frac{2011}{2}+\frac{2011}{3}+...+\frac{2011}{2010}+\frac{2011}{2011}}\)

\(\Rightarrow A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}{2011.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}\right)}\)

\(\Rightarrow A=\frac{1}{2011}\)