cho tam giác ABC có AB=AC a)chứng minh góc ACB= góc ABC b) gọi M VÀ N là trung điểm của AC và AB chứng minh góc ABM= góc ACN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CM BNC=CMB
MC=BN ; \(\widehat{B}=\widehat{C}\) ; BC chung
\(\Rightarrow\)BM=CN
CM ABM=ACN
AB=AC ; AM=AN ; \(\widehat{A}\) chung
\(\Rightarrow\)ABM =ACN \(\Rightarrow\) \(\widehat{ABM}=\widehat{ACN}\)
b \(\widehat{ABM}=\widehat{ACN}\) \(\Rightarrow\)\(\widehat{ABI}=\widehat{ACI}\);
\(\Rightarrow\) \(\widehat{AMB}=\widehat{ANC}\)\(\Rightarrow\)\(\widehat{BMC}=\widehat{CNB}\)
Xét BIN vs CIM : BN=CM ; \(\widehat{ACM}=\widehat{ACN};\)\(\widehat{BMC}=\widehat{CNB}\)
\(\Rightarrow\) IB=IC \(\Rightarrow\)IBC cân
c, Xét AIB và AIC : IB =IC ; \(\widehat{ABI}=\widehat{ACI};AB=AC\)
\(\Rightarrow\) \(\widehat{BAI}=\widehat{CAI}\)\(\Rightarrow\)AI pg góc A
d, xét BAD và CAD
góc BAI = CAI ; AB=AC ; AD chung
\(\Rightarrow\)góc ADB = ADC mà chúng cộng nhau = 180 \(\Rightarrow\)\(\widehat{D}\)= 90
a: Xét tứ giác ABCD co
M là trung điểm chung của AC và BD
=>ABCD là hình bình hành
=>AB=CD và AB//CD
=>CD vuông góc AC
b: AB+BC=AB+AD>BD=2BM
c: góc ABM=góc CDB
mà góc CDB>góc CBM
nên góc ABM>góc CBM
a, xét tam giác ABM và tam giác ACM có
AB=AC
BM=CM do M là trung điểm của BC
AM là cạnh chung
=> tam giác ABM =tam giác ACM c.c.c
=> góc B = góc C do là 2 góc tương ứng
vì tam giác ABM =tam giác ACM nên góc BMA= góc AMC (2 góc tương ứng
mà ^BMA + ^AMC =180 độ do là 2 góc kề bù
mà BMA = AMC nên BMA =AMC =180 độ :2 =90 độ
=> AM vuông góc với BC