Chứng minh rằng: nếu ac=bc(a,b,c thuộc Z, c khác 0) thì a = b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng nếu a,b,c là các số khác 0 thoả mãn : (ab+ac)/2=(ba+bc)/3=(ca+cb)/4 thì a/3=b/5=c/15
ta có (ab+ac)/2 = (ba+bc)/3 = (ca+cb)/4
=ab+ac-ba-bc+ca+cb/2-3+4 = 2ac/3
=ab+ac+ba+bc-ca-cb/2+3-4 = 2ab
=ab+ac-ba-bc-ca-cb/2-3-4 = 2bc/5
=> 2ac/3=2ab=2bc/5
Ta có 2ac/3=2ab/1 =>c/3 = b/1 => c/15 = b/5 (1)
2ac/3 = 2bc/5 => a/3 = b/5 (2)
từ (1) và(2) => a/3 = b/5 = c/15
cái này nếu chia cho c thì tức là công nhận định lí r vì chia c = *c^-1 ở 2 vế r. Ở nước ngoài mình sẽ k đc chứng minh như vậy. Mình sẽ chứng minh a*c =a + a + a +....+a, b*c cũng thế. c lần a = c lần b vì a=b theo tính chất giao hoán vậy nên ac=bc
Ta có : ac=bc nên ac=bc=0 do đó c(a-b)=0 Do c khác0 nên a-b=0 tức là a=b
k nha!!!