Cho A=999...9 (có n chữ số 9)
So sánh ổng các chữ số của A với A^2
Giúp mình nhé.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A2=999...92
Ta thấy 92=81(tổng chữ số=9)
992=9801(tổng chữ số =2.9
=>999...92=999...98000...01(tổng các chữ số =9.n)
=>Tổng các chữ số của A= tổng các chữ số của A2
Tổng các c/s của A là 9n
A2=999...92
Ta thấy 92=81(tổng chữ số=9)
992=9801(tổng chữ số =2.9
=>999...92=999...98000...01(tổng các chữ số =9.n)
=>Tổng các chữ số của A= tổng các chữ số của A2
Tổng các chữ số của A là: 9n
A=999...9{n chữ số 9}
=>A=10n-1
=> A2=(10n-1)2
= 102n-2.10n+1
= 10n(10n-2)+1
= 10n.999...98{n-1 số 9}+1
=> A2=999...98000...01{n-1 chữ số 9 và n-1 chữ số 0}
=> Tổng các chữ số của A2 là: 9(n-1)+8+1
= 9n+9
= 9n
Vậy tổng các chữ số của A và A2 bằng nhau và đều bằng 9n.
Mình làm như vầy nè Hoàng!
Cho A = 9 - 99-999-99....9999 (có 2016 chữ số 9) Hỏi sau khi thực hiện phép tính chữ số 1 xuất hiện bao nhiêu lần trong số A giúp mình với
A=(10-1)+(100-1)+(1000-1)+........+(100.....0000 -1)
50 chữ số 0 =(10+100+1000+....+100....000) - (1+1+1+....+1+1)
50 chữ số 0 ; 50 chữ số 1
=111......1110 - 50
50 chữ số 1
=111.......111060
9 chữ số 1
tổng các chữ số A < A^2