Cho tam giác ABC đều phân giác BD và CE cắt nhau tại\(\widehat{O}\).
Chứng minh :
a, BD vuông góc AC và CE vuông góc với AB
b,OA=OB=OC
c, \(\widehat{AOB}=\widehat{BOC}=\widehat{COA}\)từ đó suy ra số đo mỗi góc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Vì tam giác ABC đều => BD,CE vừa là tia phân giác vừa là đường cao=>BD vuông góc AC và CE vuông góc AB
b, vì hai tia phân giác BD và CE cắt nhau tại O suy ra O là tâm tam giác ABC suy ra OA = OB = OC (tính chất)
c, ta có góc AOB + góc BOC + góc COA = 360 độ mà AOB = BOC= COA Suy ra 3 AOB= 360 suy ra AOB = 120 vậy AOB=BOC=COA=120
a) Xét Tg AOB VÀ Tg COB, CÓ;
ab=ac(gt)
góc abo=góc cbo(gt)
BO LÀ CẠNH CHUNG
=> Tg AOB= Tg COB(C-G-C)=> OA=OC(2 cạnh tương ứng)(1)
Xét Tg BOC và Tg AOC, CÓ;
AC=BC(gt)
GÓC aco= góc bco(gt)
OClà cạnh chung
=>Tg BOC= Tg COB(C-G-C)
=>BO=CO(2 cạnh tương ứng)(2)
Từ (1) và (2)=> OA=OB=OC(ĐPCM)
b)Tg Abc đều =>Góc A= Góc B =Góc C=60 độ
=>góc BAO=OAC=ACO=BCO=ABO=CBO=30 ĐỘ
Mà Tg ABO=Tg BCO=Tg ACO (cmt)
=>O1 = O2 = O3=180-30-30=120 độ
vậy Góc AOB=BOC=AOC=120 độ
Ta có hình vẽ:
a/ Ta có: tam giác ABC đều => AB = BC = CA và góc A = góc B = góc C
Mà BD;CE lần lượt là pg của góc B; góc C
=> góc OBC = góc OCB.
=> tam giác OBC cân => OB = OC.
Xét tam giác ABO và tam giác ACO có:
AB = AC (cmt)
AO: chung
BO = CO (Cmt)
=> tam giác ABO = tam giác ACO
=> góc BAO = góc CAO = 1/2 góc A
Mà BD là pg góc B => ABO = 1/2 góc B
Mà góc A = góc B => góc BAO = góc ABO
=> tam giác OAB cân tại O => OA = OB
==> OA = OB = OC (đpcm).
b/ Ta có: góc BAO = góc CAO = góc ABD = góc ACE = góc OBC = góc OCB
Mà góc AOB = 1800 - góc OAB - góc OBA
góc BOC = 1800 - góc OBC - góc OCB
góc COA = 1800 - góc OAC - góc OCA
==> góc AOB = góc BOC = góc COA
Mà góc AOB + góc BOC + góc COA = 3600
=> góc AOB = góc BOC = góc COA = 1200
a/ Vì \(\widehat{B}=\widehat{C}\)(gt)
mà BD, CE là tia p.g của \(\widehat{B},\widehat{C}\)
\(\Rightarrow\widehat{ABD}=\widehat{DBC}=\widehat{ACE}=\widehat{ECB}\)
Xét tam giác BCD và tam giác CBE ta có:
\(\hept{\begin{cases}\widehat{B}=\widehat{C}\\BC:canh\\\widehat{DBC}=\widehat{ECB}\left(gt\right)\end{cases}}chung\)
suy ra tam giác BCD bằng tam giác CBE ( c.g.c )
Nhớ k cho mình nhé! Thank you!!!
b/ Vì \(\widehat{OBC}=\widehat{OCB}\left(cmt\right)\)
suy ra tam giác OBC cân tại O
suy ra OB = OC
Nhớ k cho mình nhé! Thank you!!!
a) Tam giác ABD và CBD có:
AB=CB (do tam giác ABC đều)
góc ABD = góc CBD (vì BD là tia phân giác của góc ABC)
BD chung
=> tam giác ABD=tam giác CBD (c.g.c) => góc BDA=góc BDC (2 góc tương ứng)
mà 2 góc này kề bù suy ra góc BDA=góc BDC=90o => BD vuông góc với AC
Chứng minh tương tự được CE vuông góc với AB
b) Tam giác ABC đều nên góc BAC=góc ABC=góc ACB=60o
mà: góc ABD=góc CBD (vì BD là tia phân giác góc ABC); góc ACE=góc BCE (vì CE là tia phân giác góc ACB)
=> góc ABD=góc CBD=góc ACE=góc BCE
Tam giác BOC có: góc CBD=góc BCE => tam giác BOC cân tại O => OB=OC(1)
Tam giác BAO và tam giác CAO có: AB=CA(\(\Delta ABC\)cân tại A);cạnh AO chung;OB=OC(cmt)
=>Tam giác BAO = tam giác CAO (c.c.c) => góc BAO=góc CAO (2 góc tương ứng)
mà góc ABC=BAC nên góc ABD=góc CBD=góc BAO=góc CAO=> tam giác BAO cân tại O=>OA=OB(2)
Từ (1) và (2) => OA=OB=OC
c) phần này dễ nên tự làm nhé