Cho tam giác ABC có S = 1/4 (BC+AC-AB)(BC-AC+AB). chứng minh tam giác ABC vuông tại A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABC có \(BC^2=AB^2+AC^2\left(5^2=3^2+4^2\right)\)
nên ΔABC vuông tại A(Định lí Pytago đảo)
b) Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔABD=ΔEBD(Cạnh huyền-góc nhọn)
Suy ra: DA=DE(hai cạnh tương ứng)
c) Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE(cmt)
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔADF=ΔEDC(Cạnh góc vuông-góc nhọn kề)
Suy ra: DF=DC(Hai cạnh tương ứng)
mà DC>DE(ΔDEC vuông tại E)
nên DF>DE
Bài 1:
a: Xét ΔABC có \(AC^2=AB^2+BC^2\)
nên ΔABC vuông tại B
b: XétΔABC có BC<AB<AC
nên \(\widehat{A}< \widehat{C}< \widehat{B}\)
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=goc EBD
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>BA=BE; DA=DE
=>BD là trung trực của AE
1) Ta có: \(BC^2=10^2=100\)
\(AB^2+AC^2=6^2+8^2=100\)
Do đó: \(BC^2=AB^2+AC^2\)(=100)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
2) Ta có: ΔABC vuông tại A(gt)
nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)
3) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot10=6\cdot8=48\)
hay AH=4,8(cm)
Vậy: AH=4,8cm
a, Ta có : \(BC^2=AB^2+AC^2\Rightarrow50^2=30^2+40^2\)* đúng *
Vậy tam giác ABC vuông tại A
b, Ta có : \(S_{ABC}=\frac{1}{2}.AB.AC=\frac{1}{2}.40.30=600\)cm2
c, biết mỗi cách tam giác đồng dang :))
Xét tam giác AHC và tam giác BAC ta có :
^AHC = ^BAC = 900
^C _ chung
Vậy tam giác AHC ~ tam giác BAC ( g.g )
\(\Rightarrow\frac{AH}{AB}=\frac{AC}{BC}\Rightarrow AH=\frac{AB.AC}{BC}=\frac{1200}{50}=24\)cm
Ta có :
\(BC^2=4^2=16\)(1)
\(AC^2-AC^2=5^2-3^2=25-9=16\)(2)
Áp dụng định lý Pytago đảo vào (1) và (2)
=> Tam giác ABC vuông tại B (đpcm)
Ta có :
\(BC^2=4^2=16\left(1\right)\)
\(AC^2-AC^2=5^2-3^2=25-9=16\left(2\right)\)
Áp dụng định lý Pitago đảo vào ( 1 ) và ( 2 )
=> Tam giác ABC vuông tại B ( đpcm )