Cho tam giác ABC. Trên tia đối của tia AB lấy D sao cho AD = AB. Trên tia đối của tia AC lấy điểm E sao cho AE = AC. a) Chứng minh BE = CD, BE // CD. b) Gọi M là trung điểm của BE và N là trung điểm của CD. Chứng minh AM = AN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét t/g ABE và t/g ADC có:
AB = AD (gt)
AE = AC (gt)
góc BAE = góc DAC (đối đỉnh)
Do đó t/g ABE = t/g ADC (c.g.c)
=> BE = CD (2 cạnh t/ứ)
b, Vì t/g ABE = t/g ADC => góc ABE = góc ADC (2 góc t/ứ)
Mà 2 góc này ở vị trí so le trong nên BE // CD
c, Vì BE = CD => \(\frac{BE}{2}=\frac{CD}{2}\) => BM = DN
Xét t/g AMB và t/g AND có:
BM = DN (cmt)
AB = AD (gt)
góc ABE = góc ADC (cmt)
Do đó t/g AMB = t/g AND (c.g.c)
=> AM = AN (2 cạnh t/ứ)
a) Xét \(\Delta EAB\) và \(\Delta DAC\) có :
\(AE=AC\) ( gt)
\(AB=AD\left(gt\right)\)
\(\widehat{EAB}=\widehat{DAC}\) ( đối đỉnh )
Do đó : \(\Delta EAB=\Delta CAD\) ( c-g-c)
\(\Rightarrow BE=CD\) ( cạnh tương ứng )
\(\Rightarrow\) \(\widehat{E_1}=\widehat{C_1}\) ( hai góc tương ứng )
b) Ta có : \(ME=\dfrac{1}{2}BE\) ( M là trung điểm của BE )
\(NC=\dfrac{1}{2}CD\) ( N là trung điểm của CD )
mà BE = CD ( cmt )
\(\Rightarrow ME=NC\)
Xét \(\Delta EAM\) và \(\Delta NAC\) có :
\(ME=NC\) (cmt)
\(AE=AC\) ( gt )
\(\widehat{E_1}=\widehat{C_1}\)
Do đó \(\Delta EAM=\Delta CAN\) ( c-g-c)
\(\Rightarrow\widehat{EAM}=\widehat{NAC}\) ( hai góc tương ứng )
Ta có : \(\widehat{EAN}+\widehat{NAC}=180^o\) ( hai góc kề bù )
hay \(\widehat{EAN}+\widehat{EAM}=180^o\) ( vì \(\widehat{EAM}=\widehat{NAC}\))
\(\Rightarrow\) ba điểm A , N , M thằng hàng (đpcm)
a) Xét tam giác BEA và tam giác DCA có:
+ AE = AC (gt).
+ AB = AD (gt).
+ \(\widehat{BAE}=\widehat{DAC}\) (2 góc đối đỉnh).
\(\Rightarrow\) Tam giác BEA = Tam giác DCA (c - g - c).
b) Tam giác BEA = Tam giác DCA (cmt).
\(\Rightarrow\) \(\widehat{ABE}=\widehat{ADC}\) (2 góc tương ứng).
Mà 2 góc này ở vị trí so le trong.
\(\Rightarrow\) BE // CD (dhnb).
c) Xét tam giác BEC có:
+ A là trung điểm của EC (AE = AC).
+ M là trung điểm của BE (gt).
\(\Rightarrow\) AM là đường trung bình của tam giác BEC.
\(\Rightarrow\) AM = \(\dfrac{1}{2}\) BC (Tính chất đường trung bình). \(\left(1\right)\)
Xét tam giác CDB có:
+ A là trung điểm của BD (AD = AB).
+ N là trung điểm của CD (gt).
\(\Rightarrow\) AN là đường trung bình của tam giác CDB.
\(\Rightarrow\) AN = \(\dfrac{1}{2}\) BC (Tính chất đường trung bình). \(\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\) \(\Rightarrow\) AM = AN (cùng = \(\dfrac{1}{2}\) BC).
a)Xét tg EAB và tg CAD có:
EA=ED(gt)
BA=AD(gt)
góc BAE=góc CAD(hai góc đối đỉnh)
=>tgEAB=tgCAD(c-g-c)
=>BE=AC(hai góc t/ư)
b)Vì tg EAB=tg CAD
=>góc ABM=góc ADC(hai góc tương ứng ) mà hai góc này ở vị trí so le trong
=>BE//CD
c)Vì BE=CD=>BE/2=CD/2=>BM=DN
Xét tg AMB và tg AND có
AB=AD(gt)
BM=DN(cmt)
góc ABE=góc ADC(cmt)
=>tgAMB=tgAND(c-g-c)
=>AM=AN(hai cạnh tương ứng )
b: Xét tứ giác BEDC có
A là trung điểm của BD
A là trung điểm của EC
Do đó: BEDC là hình bình hành
Suy ra: BE//CD