K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2015

tick đúng nha tui nghèo lắm

11 tháng 10 2015

1)a)

gọi 3 số đó là a;a+1:a+2

ta có: a+(a+1)+(a+2)=3a+3

mà 3 chia hết cho 3 nên 3a+3 chia hết cho3 

b) goij4 số đó là a;a+1;a+2;a+3;a+4

ta có tổng sẽ là: 4a+10

mà 10 ko chia hết cho 4 nên tổng 4 số trên ko chia hết cho 4

29 tháng 8 2017

I don't no.because don't vietnamese.very sorry.good bye

NV
16 tháng 2 2022

Giả sử 1 đường thẳng d bất kì (trong 13 đường thẳng nói trên) cắt BC tại M và AD tại N sao cho \(\dfrac{S_{ABMN}}{S_{DCMN}}=\dfrac{2}{5}\)

Gọi E là trung điểm AB và F là trung điểm CD, d cắt EF tại G

\(\dfrac{S_{ABMN}}{S_{DCMN}}=\dfrac{\dfrac{1}{2}\left(BM+AN\right).AB}{\dfrac{1}{2}\left(CM+DN\right).AB}=\dfrac{BM+AN}{CM+DN}=\dfrac{2}{5}\)

Mặt khác do E, F là trung điểm AB, CD \(\Rightarrow EG\) là đường trung bình hình thang ABMN và FG là đường trung bình hình thang DCMN

\(\Rightarrow BM+AN=2EG\) ; \(CM+DN=2FG\)

\(\Rightarrow\dfrac{2EG}{2FG}=\dfrac{2}{5}\Rightarrow\dfrac{EG}{FG}=\dfrac{2}{5}\)

Hay G là điểm cố định nằm trên đoạn EF (cố định) chia đoạn EF theo tỉ lệ 2:5

Do tính đối xứng của hình vuông \(\Rightarrow\) có 4 điểm có tính chất tương tự G

Hay mọi đường thẳng trong 13 đường thẳng nói trên đều phải đi qua ít nhất 1 trong 4 điểm loại G

Theo định lý Dirichlet, tồn tại ít nhất \(\left[\dfrac{13}{4}\right]+1=4\) đường thẳng cùng đi qua 1 điểm

17 tháng 2 2022

cho e xin vía đc giỏi toán như thầy:>