tìm x,y,z biết x/7=y/5=z/9 và 2011x-2010y+2009z=43663300(giải pt máy tính cầm tay ạ)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x}{2}=\dfrac{z}{3};\dfrac{y}{5}=\dfrac{z}{2}\Rightarrow\dfrac{x}{4}=\dfrac{z}{6}=\dfrac{y}{15}\)
Theo tc dãy tỉ số bằng nhau
\(\dfrac{x}{4}=\dfrac{z}{6}=\dfrac{y}{15}=\dfrac{x+y+z}{4+6+15}=\dfrac{50}{25}=2\Rightarrow x=8;y=12;y=30\)
Bài 9:
Ta có: \(\dfrac{12}{-6}=\dfrac{x}{5}=\dfrac{-y}{3}=\dfrac{z}{-17}=\dfrac{-t}{-9}\)
\(\Leftrightarrow\dfrac{x}{5}=\dfrac{-y}{3}=\dfrac{-z}{17}=\dfrac{t}{9}=-2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=-2\\\dfrac{-y}{3}=-2\\\dfrac{-z}{17}=-2\\\dfrac{t}{9}=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-10\\-y=-6\\-z=-34\\t=-18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-10\\y=6\\z=34\\t=-18\end{matrix}\right.\)
Vậy: (x,y,z,t)=(-10;6;34;-18)
Bài 11:
Ta có: \(\dfrac{-7}{6}=\dfrac{x}{18}=\dfrac{-98}{y}=\dfrac{-14}{z}=\dfrac{t}{102}=\dfrac{u}{-78}\)
\(\Leftrightarrow\dfrac{x}{18}=\dfrac{-98}{y}=\dfrac{-14}{z}=\dfrac{t}{102}=\dfrac{u}{-78}=\dfrac{-7}{6}\)
Ta có: \(\dfrac{x}{18}=\dfrac{-7}{6}\)
\(\Leftrightarrow x=\dfrac{18\cdot\left(-7\right)}{6}=-21\)
Ta có: \(\dfrac{-98}{y}=\dfrac{-7}{6}\)
\(\Leftrightarrow y=\dfrac{-98\cdot6}{-7}=84\)
Ta có: \(\dfrac{-14}{z}=\dfrac{-7}{6}\)
\(\Leftrightarrow z=\dfrac{-14\cdot6}{-7}=12\)
Ta có: \(\dfrac{u}{-78}=\dfrac{-7}{6}\)
\(\Leftrightarrow u=\dfrac{-78\cdot\left(-7\right)}{6}=\dfrac{78\cdot7}{6}=91\)
Ta có: \(\dfrac{t}{102}=\dfrac{-7}{6}\)
\(\Leftrightarrow t=\dfrac{-7\cdot102}{6}=-7\cdot17=-119\)
Vậy: (x,y,z,t,u)=(-21;84;12;-119;91)
a) ta có: \(\frac{x}{8}=\frac{y}{3}=\frac{2x}{16}=\frac{3y}{9}\)
ADTCDTSBN
...
b) ta có: \(\frac{x}{7}=\frac{y}{5}\Rightarrow\frac{x}{63}=\frac{y}{45}\)
\(\frac{z}{8}=\frac{y}{9}\Rightarrow\frac{z}{40}=\frac{y}{45}\)
\(\Rightarrow\frac{x}{63}=\frac{y}{45}=\frac{z}{40}\)
ADTCDTSBN
...
bn tự lm típ nha
Ta có : \(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\)
\(\Rightarrow\left(\frac{x}{5}\right)^2=\left(\frac{y}{7}\right)^2=\left(\frac{z}{3}\right)^2=\frac{x^2}{5^2}=\frac{y^2}{7^2}=\frac{z^2}{3^2}\)\(=\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}=\frac{x^2+y^2-z^2}{25+49-9}=\frac{585}{65}=9\)
\(\Rightarrow x=9.5=45\)
\(y=9.7=63\)
\(z=9.3=27\)
Theo đề ra, ta có:
\(\hept{\begin{cases}\frac{10}{x-5}=\frac{6}{y-9}\\\frac{10}{x-5}=\frac{14}{z-21}\\xyz=6720\end{cases}}\Rightarrow\hept{\begin{cases}10y-90=6x-30\\10z-210=14x-70\\xyz=6720\end{cases}}\Rightarrow\hept{\begin{cases}10y=6x+60\\10z=14x+140\\xyz=6720\end{cases}}\Rightarrow\hept{\begin{cases}y=\frac{6x+60}{10}\\z=\frac{4x+140}{10}\\x.\frac{6x+60}{10}.\frac{4x+140}{10}=6720\left(1\right)\end{cases}}\)
Từ \(\left(1\right)\Rightarrow\frac{\left(6x^2+60x\right)\left(4x+140\right)}{100}=6720\)
\(\Rightarrow24x^3+840x^2+240x^2+8400=672000\)
\(\Rightarrow24x^3+840x^2+240x^2-663600=0\)
\(\Rightarrow x=21,94727494\)
\(\Rightarrow y=19,16836496\)
\(\Rightarrow z=22,77890998\)