Cho 2023m^2+m = 2022n^2+n (vs m, n thuộc N). Chứng minh rằng 2023(m+n) + 1 là số chính phương.
Mọi người giúp tớ với. Bài này là bài của hsg lớp 9 năm 2018 của tỉnh nào đó nên chắc ko có trên mạng đâu.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 3 STN liên tiếp là a;a+1;a+2 Ta có tổng là : a+a+1+a+2=3a+3=3(a+1) số này chia hết cho 3. Tương Tự Gọi 4 STN liên tiếp là a;a+1;a+2;a+3 Ta có: 4a+4=4(a+1) chia hết cho 4
Ta có : \(B=n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2=n^2\left(n+1\right)^2+\left(2n^2+2n\right)+1=n^2\left(n+1\right)^2+2n\left(n+1\right)+1\)
\(=\left[n\left(n+1\right)+1\right]^2\) là một số chính phương.
Bạn thêm điều kiện n là số tự nhiên nhé ^^
a) 2n^3 + 2n^2 - 2n^3 - 2n^2 + 6n = 6n chia hết 6
b) 3n - 2n^2 - ( n + 4n^2 - 1 - 4n ) - 1
= 3n - 2n^2 - n - 4n^2 + 1 + 4n -1
= 6n - 6n^2 chia hết 6
c) m^3 + 8 - m^3 + m^2 - 9 - m^2 - 18
= - 19
Bài 1:
\(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n\left(n^2+n-n^2-n+3\right)\)
\(=6n\)\(⋮\)\(6\)
Bài 2:
\(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1\)
\(=3n-2n^2-\left(n+4n^2-1-4n\right)-1\)
\(=6n-6n^2=6\left(n-n^2\right)\)\(⋮\)\(6\)
Bài 3:
\(\left(m^2-2m+4\right)\left(m+2\right)-m^3+\left(m+3\right)\left(m-3\right)-m^2-18\)
\(=m^3+8-m^3+m^2-9-m^2-18\)
\(=-19\)
\(\Rightarrow\)đpcm
Bài 1. x^2 \(\equiv\)8 (mod 0,1). (cmdd)
T tự: y^2 \(\equiv\)8 (mod 0,1)
=> x^2+y^2 \(\equiv\)8 (mod 0,1,2)
Mà 8z+6 \(\equiv\)8 (mod 6)
=> đpcm
Ta có 2023m2 + m = 2022n2 + n
<=> n2 = 2023n2 + n - 2023m2 - m
<=> n2 = 2023(n2 - m2) + (n - m)
<=> n2 = (n - m)[2023(n + m) + 1] (*)
Đặt (n - m ; 2023(n + m) + 1) = d (\(d\inℕ^∗\))
=> \(\left\{{}\begin{matrix}n-m⋮d\\2023.\left(n+m\right)+1⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}n-m⋮d\\\left(n-m\right).\left[2023.\left(n+m\right)+1\right]⋮d^2\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}n-m⋮d\\n^2⋮d^2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}n-m⋮d\\n⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}n⋮d\\m⋮d\end{matrix}\right.\) (1)
Lại có 2023(n + m) + 1 \(⋮d\) (2)
Từ (1) và (2) => d = 1
=> (n - m ; 2023(n + m) + 1) = 1 (3)
Từ (*) và (3) => 2023(n + m) + 1 là số chính phương