Nếu một số có 2 chữ số mà hiệu giữa bình phương của số đó với bình phương tổng các chữ số của nó là 99 thì số cần tìm là số nào
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi a là chữ số hàng chục, b là chữ số hàng đơn vị. Điều kiện a, b nguyên 1 ≤ a ≤ 9 và 0 ≤ b ≤ 9. Ta có:
'
Trường hợp 1
a - b = 3 ⇒ a = b + 3
Thay vào phương trình đầu của hệ phương trình ta được:
11b + 30 = 2(b + 3)b + 18 ⇒ 2 b 2 - 5 b + 12 = 0
Phương trình cuối có hai nghiệm: b 1 = 4 , b 2 = -3/2
Giá trị b 2 = -3/2 không thỏa mãn điều kiện 0 ≤ b ≤ 9 nên nên bị loại.
Vậy b = 4, suy ra a = 7.
Trường hợp 2
a - b = - 3 ⇒ a = b - 3
Thay vào phương trình của hệ phương trình ra được
11b - 30 = 2(b - 3)b + 18 ⇒ 2 b 2 - 17 b + 48 = 0
Phương trình này vô nghiệm.
Vậy số phải tìm là 74.
Gọi số cần tìm có dạng: \(\overline{ab}\) \(\left(a,b\in N;a,b>0\right)\)
Thương của số cần tìm với tích hai chữ số của nó có dạng:\(\overline{ab}:\left(ab\right)\).
Theo giả thiết ta có: \(\overline{ab}=2ab+18\).
Tổng bình phương các chữ số của số cần tìm là: \(a^2+b^2+9=\overline{ab}\).
Ta có hệ phương trình: \(\left\{{}\begin{matrix}2ab+18=\overline{ab}\\a^2+b^2+9=\overline{ab}\end{matrix}\right.\)\(\Rightarrow a^2+b^2+9=2ab+18\)\(\Leftrightarrow\left(a-b\right)^2=9\)\(\Leftrightarrow\left|a-b\right|=3\).
Th 1. \(a-b=3\)\(\Leftrightarrow a=b+3\). Khi đó:
\(2ab+18=\overline{ab}\)\(\Leftrightarrow2ab+18=10a+b\)\(\Leftrightarrow2\left(b+3\right)b+18=10\left(b+3\right)+b\)\(\Leftrightarrow2b^2-5b-12=0\)\(\Leftrightarrow\left\{{}\begin{matrix}b=4\left(tm\right)\\b=\dfrac{-3}{2}\left(l\right)\end{matrix}\right.\).
Với \(b=4\) ta có \(a=3+b=3+4=7\). Vậy số đó là 73.
Th2: \(a-b=-3\)\(\Leftrightarrow a=b-3\). Khi đó:
\(2ab+18=10a+b\)\(\Leftrightarrow2\left(b-3\right)b+18=10\left(b-3\right)+b\)
\(\Leftrightarrow2b^2-17b+48=0\) (Vô nghiệm).
Vậy số cần tìm là: 73.
Gọi số cần tìm là ab.
Ta có (ab)2 = a3 + b3
Giả sử ab = 33 = 9
thì (ab)2 = 81 => a3 + b3 = 81. Bạn tìm chữ số a và b => điều phải chứng minh
(ab)^2=(a+b)^3
Từ đó suy ra (ab) phải là lập phương của 1 số, a+b là bình phương của 1 số
(ab) = 27 hoặc 64
chỉ có 27 thỏa mãn
vậy (ab)=27
Gỉa sử x và y là 2 số phải tìm và x^2 = y^3 = a. Phân tích a ra thừa số nguyên tố , ta thấy các số mũ của các thừa số nguyên tố phải chia hết cho 2 vì a = x^2 , lại phải chia hết cho 3 vì a= y^3 . Khi đó , a là lũy thừa bấc 6 của 1 số tự nhiên nào đó . Vì a lớn hơn hoặc = 100 và nhỏ hơn 10000 nên a có thể = 3^6 hoặc 4^ 6 . Nhưng 3^6= ( 3^2 )^3 ko phải là lập phương của 1 số có 2 chữ số còn 4^6 = (2^2)^6 =( 2^ 6) ^2 = 64^2 và 4^6 = 2^ 12 = ( 2^4 ) ^3 = 16^3 . Vậy 2 số phải tìm là 64 và 16.
Gọi số cần tìm là a b a , b ∈ N ; 1 ≤ a ≤ 9 ; b ≤ 9
Từ đầu bài: đặt: a b = x 3 ; a + b = x 2 x ∈ N
Vì : 10 < a b < 100 nên 10 ≤ x 3 ≤ 100 ta có 2 3 < x 3 < 5 3
Suy ra: 2 < x < 5 => x ∈ {3;4}
* Với: x = 3 => a b = 3 3 = 27
a = 2; b = 1 thỏa mãn a b 2 = a + b 3 . Vì: 27 2 = ( 2 + 7 ) 3 = 729
* Với: x = 4 => a b = 4 3 = 64
a = 6; b = 4 không thỏa mãn a b 2 = a + b 3 . Vì 64 2 ≠ ( 6 + 4 ) 3
Vậy số cần tìm là 27
Gọi số đó là: ab
Theo đề bài: (ab)2 - (a+ b)2 = 99
=> (10a + b)2 - (a + b)2 = 99
=> (10a + b). (10a + b) - (a+ b).(a+b) = 99
=>...
=> 99a2 + 18ab = 99 => 9a.(11a + b) = 99 => a.(11a + b) = 11 = 1.11
=> a = 1; 11a + b = 11
=> a = 1; b = 0
Vậy số đó là 10
+) Nếu đề bài bò đi "bình phương " ở tổng các chữ số :
Ta có: (ab)2 - a - b = 99 => ab2 = 99 + a + b
Vì a; b là các chữ số nên a + b < 20 => ab2 < 99 + 20 = 119
Mà ab2 là bình phương của số có 2 chữ số nên ab2 = 100 = 102
Vậy số đó là 10
+) bạn chú ý: Viết đề rõ ràng.