Cho A= | 2x - 1| - (x - 5)
a) Rút gọn biểu thức A.
b) Với các giá trị nào của x thì A= 4
HELP ME!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
A=\(\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right)\div\dfrac{2x}{5x-5}\)
\(\Leftrightarrow\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right)\div\dfrac{2x}{5\left(x-1\right)}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x-1\ne0\\x+1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0+1\\x=0-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
MTC: 5(x-1)(x+1)
\([\dfrac{5\left(x+1\right)\left(x+1\right)}{5\left(x-1\right)\left(x+1\right)}-\dfrac{5\left(x-1\right)\left(x-1\right)}{5\left(x-1\right)\left(x+1\right)}]\div\dfrac{2x\left(x+1\right)}{5\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow[5\left(x+1\right)\left(x+1\right)-5\left(x-1\right)\left(x-1\right)]\div2x\left(x+1\right)\)
\(\Leftrightarrow[5\left(x+1\right)^2-5\left(x-1\right)^2]\div2x^2+2x\)
\(\Leftrightarrow[5\left(x^2+2x+1\right)-5\left(x^2-2x+1\right)]\div2x^2+2x\)
\(\Leftrightarrow(5x^2+10x+5-5x^2+10x-5)\div2x^2+2x\)
\(\Leftrightarrow20x\div\left(2x^2+2x\right)\)
\(\Leftrightarrow10x+10\)
a ) A = |2x - 1| - (x - 5)
Ta có : \(\left|2x-1\right|=\hept{\begin{cases}2x-1\Leftrightarrow2x-1\ge0\Rightarrow x\ge\frac{1}{2}\\-\left(2x-1\right)\Leftrightarrow2x-1< 0\Rightarrow x< \frac{1}{2}\end{cases}}\)
TH1 : 2x - 1 ≥ 0 thì A = 2x - 1 - (x - 5) = 2x - 1 - x + 5 = x + 4
TH2 : 2x - 1 < 0 thì A = - 2x + 1 - x + 5 = - 3x + 6
b ) Để A = 4 <=> x + 4 = 4 hoặc - 3x + 6 = 4
TH1 : x + 4 = 4 => x = 0
TH2 : - 3x + 6 = 4 => x = 2/3
Vậy x = { 0;2/3 } thì A = 4
a, A=|2x-1|-(x-5)
A=|2x-1|-x+5
A=2x-1-x+5
A=2x-x+4
A=x+4