so sánh 322 va 223
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có: 34000 = (34)1000 = 811000
92000 = (92)1000 = 811000
=> ....
C2: ta có: 92000 = (32)2000= 34000
b) ta có: 2332 < 2333 = (23)111 = 8111
3223 > 3222 = (32)111 = 9111
=> 8111 < 9111
=> 2332 < 3223
2332< 2333=(23)111=8111
3223>3222=(32)111=9111
mà 8<9
=> 2332<3223
đúng tk cho mik
Ta có: 2332 = 2330+2 = 2330 .22 = (23)110.4= 8110 . 4
3223 = 3220+3 = 3220 . 33 =(32)110 . 27=9110 . 27
Vì 8<9 , 4<27 => 8110< 9110
=> 8110 . 4 < 9110 . 27
=> 2332 < 3223
a, Ta có : \(9^{2000}=\left(3^2\right)^{2000}=3^{4000}\)
Mà \(3^{4000}=3^{4000}\)
\(\Rightarrow3^{4000}=9^{2000}\)
Vậy \(3^{4000}=9^{2000}\)
b, Ta có : \(2^{332}< 2^{333}=2^{3.111}=\left(2^3\right)^{111}=8^{111}\)
\(3^{223}>3^{222}=3^{2.111}=\left(3^2\right)^{111}=9^{111}\)
Vì \(8^{111}< 9^{111}\)
\(\Rightarrow2^{333} < 3^{222}\)
\(\Rightarrow2^{332}< 3^{223}\)
Vậy \(2^{332}< 3^{223}\)
a) \(3^{4000}\) và \(9^{2000}\)
ta có:\(9^{2000}=\left(3^2\right)^{2000}=9^{2000}\)
=>\(9^{2000}=9^{2000}\Leftrightarrow3^{4000}=9^{2000}\)
b)\(2^{332}\) và \(3^{223}\)
\(2^{332}\) <\(2^{333}\) mà \(2^{333}=\left(2^3\right)^{111}=8^{111}\)(1)
\(3^{223}\) >\(3^{222}\) mà \(3^{222}=\left(3^2\right)^{111}=9^{111}\)(2)
từ (1 và 2),suy ra:8111<9111 hay 2332<3223
Ta có:2332<2333= (23)111 =8111
3223>3222= (32)111 =9111
Vì 8111<9111nên
2332<8111<9111<3223 => 2332< 3223
Vậy 2332< 3223 .
ta có 223<233
322=(32)11=911
233=(23)11=811
vì 9>8 nên 911>811 hay 322>233 mà 233>223
=>322>223